979 resultados para Capthsanthin-capsorubin synthase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis results from an overwhelming response to infection and is a major contributor to death in intensive care units worldwide. In recent years, we and others have shown that neutrophil functionality is impaired in sepsis. This correlates with sepsis severity and contributes to aggravation of sepsis by precluding bacterial clearance. Nitric oxide (NO) is a major contributor to the impairment of neutrophil function in sepsis. However, attempts to inhibit NO synthesis in sepsis resulted in increased death despite restoring neutrophil migration. This could be in part attributed to a reduction of the NO-dependent microbicidal activity of neutrophils. In sepsis, the beneficial effects resulting from the inhibition of soluble guanylyl cyclase (sGC), a downstream target of NO, have long been appreciated but poorly understood. However, the effects of sGC inhibition on neutrophil function in sepsis have never been addressed. In the present study, we show that TLR activation in human neutrophils leads to decreased chemotaxis, which correlated with chemotactic receptor internalization and increased G protein-coupled receptor kinase 2 expression, in a process involving the NO-sGC-protein kinase G axis. We also demonstrate that inhibition of sGC activity increased survival in a murine model of sepsis, which was paralleled by restored neutrophil migratory function and increased bacterial clearance. Finally, the beneficial effect of sGC inhibition could also be demonstrated in mice treated after the onset of sepsis. Our results suggest that the beneficial effects of sGC inhibition in sepsis could be at least in part attributed to a recovery of neutrophil functionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis develops when the initial host response is unable to contain the primary infection, resulting in widespread inflammation and multiple organ dysfunction. The impairment of neutrophil migration into the infection site, also termed neutrophil paralysis, is a critical hallmark of sepsis, which is directly related to the severity of the disease. Although the precise mechanism of this phenomenon is not fully understood, there has been much advancement in the understanding of this field. In this review, we highlight the recent insights into the molecular mechanisms of neutrophil paralysis during sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM) is a granulomatous disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb). To determine the influence of nitric oxide (NO) on this disease, we tested cis-[Ru(bpy)2(NO)SO3](PF6), ruthenium nitrosyl, which releases NO when activated by biological reducing agents, in BALB/c mice infected intravenously with Pb 18 isolate. In a previous study by our group, the fungicidal activity of ruthenium nitrosyl was evaluated in a mouse model of acute PCM, by measuring the immune cellular response (DTH), histopathological characteristics of the granulomatous lesions (and numbers), cytokines, and NO production. We found that cis-[Ru(bpy)2(NO)SO3](PF6)-treated mice were more resistant to infection, since they exhibited higher survival when compared with the control group. Furthermore, we observed a decreased influx of inflammatory cells in the lung and liver tissue of treated mice, possibly because of a minor reduction in fungal cell numbers. Moreover, an increased production of IL-10 and a decrease in TNF-alpha levels were detected in lung tissues of infected mice treated with cis-[Ru(bpy)2(NO)SO3](PF6). Immunohistochemistry showed that there was no difference in the number of VEGF- expressing cells. The animals treated with cis-[Ru(bpy)2(NO)SO3](PF6) showed high NO levels at 40 days after infection. These results show that NO is effectively involved in the mechanism that regulates the immune response in lung of Pb-infected mice. These data suggest that NO is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, influencing cytokine production, and consequently moderating the development of a strong inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have showed that SIN-1, a nitric oxide (NO) donor, injected into the dorsolateral column of the periaqueductal gray (dlPAG) induces flight reactions. This drug, however, can also produce peroxynitrite, which may interfere in this effect. In addition, it is also unknown if this effect is mediated by local activation of soluble guanylate cyclase (sGC). The aims of this study, therefore, were (1) to investigate if NOC-9 (6-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine), a NO donor that does not produce peroxynitrite, would produce flight reactions after intra-dlPAG administration similar to those induced by SIN-1; (2) to verify if these responses could be prevented by local injection of a selective guanylate cyclase inhibitor (ODQ). Male Wistar rats (n = 5-12) with cannulae aimed at the dlPAG received injections of TRIS (pH 10.0, 0.5 mu l), NOC-9 (75 and 150 nmol), saline or SIN-1 (200 nmol) and were placed in an open arena for 10 min. In a subsequent experiment animals (n = 7-8) were pretreated with ODQ (1 nmol/0.5 mu l) before receiving NOC-9 150 nmol. NOC-9 induced a significant dose-dependent increase in flight reactions in the first minute after injection (% of animals displaying flight: vehicle = 0%, NOC 75 = 67%. NOC 150 = 75%). SIN-1 had a similar effect (100% of animals showing flight) but the effects lasted longer (10 min) than those of NOC-9. The effect of NOC-9 (150 nmol) was prevented by pretreatment with ODQ (% of animals displaying flight: vehicle + NOC 150 = 71 %, ODQ + NOC 150 = 37%). The results suggest that NO donors injected into the dlPAG induce defensive responses that are not mediated by secondary peroxynitrite production. Moreover, they also indicate that these defensive responses depend on activation of local sGC. The data strengthen the proposal that NO can modulate defensive reactions in the dlPAG. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives The aim was to test the potential use of an extract of Mikania laevigata (popularly known in Brazil as guaco), made from leaves harvested in different months of the year, oil neutrophil migration after all inflammatory Stimulus and investigate the underlying molecular mechanisms. Methods We examined the effect of guaco on vascular permeability and leucocyte function in carrageenan-induced peritonitis in mice. Key findings Our results demonstrated that guaco extract administered subcutaneously (3 mg/kg) decreased the vascular permeability and also leucocyte rolling and adhesion to the inflamed tissues by a mechanism dependent on nitric oxide. Specifically, inhibitors of nitric oxide synthase remarkably abrogated the guaco extract-mediated suppression of neutrophil migration to the inflammatory site. In addition, guaco extract-mediated suppression of neutrophil migration appeared to be dependent on the production of the cytokines interleukin-1 beta and tumour necrosis factor-alpha. One of the major constituents of the guaco extract, coumarin, was able to inhibit the neutrophil migration towards the inflammatory focus. Conclusions In conclusion the anti-inflammatory effect induced by guaco extract may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OT (oxytocin) is secreted from the posterior pituitary gland, and its secretion has been shown to be modulated by NO (nitric oxide). In rats, OT secretion is also stimulated by hyperosmolarity of the extracellular fluid. Furthermore, NOS (nitric oxide synthase) is located in hypothalamic areas involved in fluid balance control. In the present study, we evaluated the role of the NOS/NO and HO (haem oxygenase)/CO (carbon monoxide) systems in the osmotic regulation of OT release from rat hypothalamus in vitro. We conducted experiments on hypothalamic fragments to determine the following: (i) whether NO donors and NOS inhibitors modulate OT release and (ii) whether the changes in OT response occur concurrently with changes in NOS or HO activity in the hypothalamus. Hyperosmotic stimulation induced a significant increase in OT release that was associated with a reduction in nitrite production. Osmotic stimulation of OT release was inhibited by NO donors. NOS inhibitors did not affect either basal or osmotically stimulated OT release. Blockade of HO inhibited both basal and osmotically stimulated OT release, and induced a marked increase in NOS activity. These results indicate the involvement of CO in the regulation of NOS activity. The present data demonstrate that hypothalamic OT release induced by osmotic stimuli is modulated, at least in part, by interactions between NO and CO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Santos FM, Dias DPM, Silva CAA, Fazan Jr R, Salgado HC. Sympathetic activity is not increased in L-NAME hypertensive rats. Am J Physiol Regul Integr Comp Physiol 298: R89-R95, 2010. First published November 4, 2009; doi:10.1152/ajpregu.00449.2009.-The role played by the sympathetic drive in the development of N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension is not firmly established. Therefore, the present study was undertaken in conscious rats in which hypertension was induced by treatment with L-NAME over the course of either 2 or 14 days. Mean arterial pressure (MAP) was measured via a catheter placed in the femoral artery, drugs were administered via a cannula placed in the femoral vein, and renal sympathetic nerve activity (RSNA) was monitored using an implanted electrode. Despite the remarkable increase in arterial pressure, heart rate did not change after treatment with L-NAME. RSNA was similar in L-NAME-induced hypertensive rats treated over the course of 2 or 14 days, as well as in normotensive rats. It was also demonstrated that L-NAME-induced hypertensive rats displayed a resetting of the baroreflex control of RSNA to hypertensive levels, with decreased sensitivity over the course of 2 or 14 days. Furthermore, the sympathetic-vagal balance examined in the time and frequency domain and the renal and plasma norepinephrine content did not differ between groups. In conclusion, the evaluation of the sympathetic drive in conscious rats demonstrated that the arterial hypertension induced by L-NAME treatment over the course of 2 and 14 days does not show sympathetic overactivity.