924 resultados para Cancer, Posttraumatic Growth, PTSD
Resumo:
Hypercoagulability of the blood might partially explain the increased cardiovascular disease risk in posttraumatic stress disorder (PTSD) and is also triggered by anticipatory stress. We hypothesized exaggerated procoagulant reactivity in patients with PTSD in response to a trauma-specific interview that would be moderated by momentary stress levels. We examined 23 patients with interviewer-diagnosed PTSD caused by myocardial infarction (MI) and 21 post-MI patients without PTSD. A second diagnostic (i.e., trauma-specific) interview to assess posttraumatic stress severity was performed after a median follow-up of 26 months (range 12-36). Before that interview patients rated levels of momentary stress (Likert scale 0-10) and had blood collected before and after the interview. The interaction between PTSD diagnostic status at study entry and level of momentary stress before the follow-up interview predicted reactivity of fibrinogen (P=0.036) and d-dimer (P=0.002) to the PTSD interview. Among patients with high momentary stress levels, PTSD patients had greater fibrinogen (P=0.023) and d-dimer (P=0.035) reactivity than non-PTSD patients. Among patients with low momentary stress levels, PTSD patients had less d-dimer reactivity than non-PTSD patients (P=0.024); fibrinogen reactivity did not significantly differ between groups. Momentary stress levels, but not severity of posttraumatic stress, correlated with d-dimer reactivity in PTSD patients (r=0.46, P=0.029). We conclude that momentary stress levels moderated the relationship between PTSD and procoagulant reactivity to a trauma-specific interview. Procoagulant reactivity in post-MI patients with PTSD confronted with their traumatically experienced MI was observed if patients perceived high levels of momentary stress before the interview.
Resumo:
Adjuvant therapy has improved the survival of women with early breast cancer (BC). Meta-analyses suggest that anthracycline-based regimens reduced the annual BC death rate by 40% in women below the age of 50 and 20% in older women. Novel agents designed to modulate abnormal growth factor signaling in and around the BC cell further increase patients' chances of survival. However, both conventional chemotherapeutic agents as well as some of the novel signaling inhibitors can induce important cardiovascular side-effects, potentially attenuating the progress made in recent years. The mechanism of cancer drug-induced cardiovascular complications varies greatly with some compounds inducing irreversible myocardial cell damage, while others lead to temporary cell dysfunction. The challenge of the future will be to prospectively discriminate between irreversible damage which can lead to progressive cardiovascular disease and reversible cardiovascular dysfunctions without further prognostic implications. Since adjuvant therapy for BC is potentially curative, emphasis must be placed on finding treatments combining maximum efficacy with the minimum of long-term side-effects in order to achieve survival with preserved quality of life.
Resumo:
The cardiotoxic potential of cytotoxic cancer chemotherapy is well known. Prime examples are the anthracyclines, which are highly efficacious agents for hemopoietic malignancies and solid tumors, but their clinical use is limited primarily by cardiotoxicity. Besides the conventional chemotherapeutics, new cancer drugs were developed in the last decade with the goal to specifically inhibit selected molecular targets such as growth factor receptors or intracellular tyrosine kinases in cancer cells. However, the outcome of combining conventional and newer cancer therapies could have unexpected side effects not anticipated so far and the long-term outcome is not known. Sometimes, however, unexpected side effects also shed light on previously unknown physiological functions. For example, the anti-HER2 cancer therapeutic trastuzumab (Herceptin), which can induce cardiac dysfunction, has demonstrated the importance of the ErbB/neuregulin signaling system in the adult heart. Subsequently, the role of endothelial-myocardial communication in maintaining phenotype and survival of adult cardiomyocytes has increasingly been recognized.
Resumo:
The membrane glycoprotein podoplanin is expressed by several types of human cancers and might be associated with their malignant progression. Its exact biological function and molecular targets are unclear, however. Here, we assessed the relevance of tumor cell expression of podoplanin in cancer metastasis to lymph nodes, using a human MCF7 breast carcinoma xenograft model. We found that podoplanin expression promoted tumor cell motility in vitro and, unexpectedly, increased tumor lymphangiogenesis and metastasis to regional lymph nodes in vivo, without promoting primary tumor growth. Importantly, high cancer cell expression levels of podoplanin correlated with lymph node metastasis and reduced survival times in a large cohort of 252 oral squamous cell carcinoma patients. Based on comparative transcriptional profiling of tumor xenografts, we identified endothelin-1, villin-1, and tenascin-C as potential mediators of podoplanin-induced tumor lymphangiogenesis and metastasis. These unexpected findings identify a novel mechanism of tumor lymphangiogenesis and metastasis induced by cancer cell expression of podoplanin, suggesting that reagents designed to interfere with podoplanin function might be developed as therapeutics for patients with advanced cancer.
Resumo:
Intussusception is an alternative to the sprouting mode of angiogenesis. The advantage of this mechanism of vascular growth is that blood vessels are generated more rapidly and the capillaries thereby formed are less leaky. This review article summarizes our current knowledge concerning the role played by intussusceptive microvascular growth in tumor growth. Interestingly, an angiogenic switch from sprouting to intussusceptive angiogenesis occurs after treatment with angiogenesis inhibitors and may be considered as a tumor-protective adaptative response.
Resumo:
Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer.
Resumo:
Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF)-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer) stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.
Resumo:
Background: Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Methodology: Recently, a computational approach was used to successfully design peptides that are new lead compounds against breast cancer. We used replica exchange molecular dynamics to predict the structure and dynamics of active peptides, leading to the discovery of smaller bioactive peptides. Conclusions: These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used along with the experimental information that led to the successful completion of this research.
Resumo:
Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.
Resumo:
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Resumo:
Objectives Posttraumatic stress disorder (PTSD) prospectively increases the risk of incident cardiovascular disease (CVD) independent of other risk factors in otherwise healthy individuals. Between 10% and 20% of patients develop PTSD related to the traumatic experience of myocardial infarction (MI). We investigated the hypothesis that PTSD symptoms caused by MI predict adverse cardiovascular outcome. Methods We studied 297 patients (61 ± 10 years, 83% men) who self-rated PTSD symptoms attributable to a previous index MI. Non-fatal CVD-related hospital readmissions (i.e. recurrent MI, elective and non-elective intracoronary stenting, bypass surgery, pacemaker implantation, cardiac arrhythmia, cerebrovascular event) were assessed at follow-up. Cox proportional hazard models controlled for demographic factors, coronary heart disease severity, major CVD risk factors, cardiac medication, and mental health treatment. Results Forty-three patients (14.5%) experienced an adverse event during a mean follow-up of 2.8 years (range 1.3–3.8). A 10 point higher level in the PTSD symptom score (mean 8.8 ± 9.0, range 0–47) revealed a hazard ratio (HR) of 1.42 (95% CI 1.07–1.88) for a CVD-related hospital readmission in the fully adjusted model. A similarly increased risk (HR 1.45, 95% CI 1.07–1.97) emerged for patients with a major or unscheduled CVD-related readmission (i.e. when excluding patients with elective stenting). Conclusions Elevated levels of PTSD symptoms caused by MI may adversely impact non-fatal cardiovascular outcome in post-MI patients independent of other important prognostic factors. The possible importance of PTSD symptoms as a novel prognostic psychosocial risk factor in post-MI patients warrants further study.
Resumo:
Context: IGF-I plays a central role in metabolism and growth regulation. High IGF-I levels are associated with increased cancer risk and low IGF-I levels with increased risk for cardiovascular disease. Objective: Our objective was to determine the relationship between circulating IGF-I levels and mortality in the general population using random-effects meta-analysis and dose-response metaregression. Data Sources: We searched PubMed, EMBASE, Web of Science, and Cochrane Library from 1985 to September 2010 to identify relevant studies. Study Selection: Population-based cohort studies and (nested) case-control studies reporting on the relation between circulating IGF-I and mortality were assessed for eligibility. Data Extraction: Data extraction was performed by two investigators independently, using a standardized data extraction sheet. Data Synthesis: Twelve studies, with 14,906 participants, were included. Overall, risk of bias was limited. Mortality in subjects with low or high IGF-I levels was compared with mid-centile reference categories. All-cause mortality was increased in subjects with low as well as high IGF-I, with a hazard ratio (HR) of 1.27 (95% CI = 1.08–1.49) and HR of 1.18 (95% CI = 1.04–1.34), respectively. Dose-response metaregression showed a U-shaped relation of IGF-I and all-cause mortality (P = 0.003). The predicted HR for the increase in mortality comparing the 10th IGF-I with the 50th percentile was 1.56 (95% CI = 1.31–1.86); the predicted HR comparing the 90th with the 50th percentile was 1.29 (95% CI = 1.06–1.58). A U-shaped relationship was present for both cancer mortality and cardiovascular mortality. Conclusions: Both low and high IGF-I concentrations are associated with increased mortality in the general population.
Resumo:
Background Purified thymus extracts (pTE) and synthetic thymic peptides (sTP) are thought to enhance the immune system of cancer patients in order to fight the growth of tumour cells and to resist infections due to immunosuppression induced by the disease and antineoplastic therapy. Objectives To evaluate the effectiveness of pTE and sTP for the management of cancer. Search methods We searched CENTRAL (The Cochrane Library 2010, Issue 3), MEDLINE, EMBASE, AMED, BIOETHICSLINE, BIOSIS, CATLINE, CISCOM, HEALTHSTAR, HTA, SOMED and LILACS (to February 2010). Selection criteria Randomised trials of pTE or sTP in addition to chemotherapy or radiotherapy, or both, compared to the same regimen with placebo or no additional treatment in adult cancer patients. Data collection and analysis Two authors independently extracted data from published trials. We derived odds ratios (OR) from overall survival (OS) and disease-free survival (DFS) rates, tumour response (TR) rates, and rates of adverse effects (AE) related to antineoplastic treatments. We used a random-effects model for meta-analysis. Main results We identified 26 trials (2736 patients). Twenty trials investigated pTE (thymostimulin or thymosin fraction 5) and six trials investigated sTP (thymopentin or thymosin α1). Twenty-one trials reported results for OS, six for DFS, 14 for TR, nine for AE and 10 for safety of pTE and sTP. Addition of pTE conferred no benefit on OS (RR 1.00, 95% CI 0.79 to 1.25); DFS (RR 0.97, 95% CI 0.82 to 1.16); or TR (RR 1.07, 95% CI 0.92 to 1.25). Heterogeneity was moderate to high for all these outcomes. For thymosin α1 the pooled RR for OS was 1.21 (95% CI 0.94 to 1.56, P = 0.14), with low heterogeneity; and 3.37 (95% CI 0.66 to 17.30, P = 0.15) for DFS, with moderate heterogeneity. The pTE reduced the risk of severe infectious complications (RR 0.54, 95% CI 0.38 to 0.78, P = 0.0008; I² = 0%). The RR for severe neutropenia in patients treated with thymostimulin was 0.55 (95% CI 0.25 to 1.23, P = 0.15). Tolerability of pTE and sTP was good. Most of the trials had at least a moderate risk of bias. Authors' conclusions Overall, we found neither evidence that the addition of pTE to antineoplastic treatment reduced the risk of death or disease progression nor that it improved the rate of tumour responses to antineoplastic treatment. For thymosin α1, there was a trend for a reduced risk of dying and of improved DFS. There was preliminary evidence that pTE lowered the risk of severe infectious complications in patients undergoing chemotherapy or radiotherapy.
Resumo:
Lung cancer is the leading cause of cancer-related mortality worldwide and more than 1 million people annually die in consequence of lung cancer. Although an improvement in lung cancer treatment could be achieved, especially in the last decade, the development of additional therapeutic strategies is urgently required in order to provide improved survival benefit for patients. Lung cancer formation is caused by genetic modifications commonly caused by tobacco smoking. Numerous studies have demonstrated the role of extracellular growth factors in lung cancer cell proliferation, metastasis, and chemoresistance. Mutations and amplifications in molecules related to receptor tyrosine signalling, such as EGFR, ErbB2, c-Met, c-Kit, VEGFR, PI3K, and PTEN are only some of the alterations known to contribute to the development of lung cancer. The phosphoinositide 3-kinase (PI3K) pathway, fundamental for cell development, growth, and survival, is known to be frequently altered in neoplasia, including carcinomas of the lung. Based on the high frequency of alterations, which include mutations and amplifications, leading to over-activation of certain upstream/downstream mediators, targeting components of the PI3K signalling pathway is considered to be a promising therapeutic approach in cancer treatment. In this article we will summarize the current knowledge about the involvement of PI3K signalling in lung cancer and discuss the development of targeted therapies involving PI3K pathway inhibitors.
Resumo:
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.