936 resultados para Calyx Lobe Removal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In terms of changing flow and sediment regimes of rivers, dams are often regarded as the most dominant form of human impact on fluvial systems. Dams can decrease the flux of water and sediments leading to channel changes such as upstream aggradation and downstream degradation. The opposite effects occur when dams are removed. Channel degradation often requires further intervention in terms of river bed and bank protection works. The situation evolves more complex in river systems that are impacted by a series of dams due to feedback processes between the different system compartments. A number of studies have recently investigated geomorphic systems using connectivity approaches to improve the understanding of geomorphic system response to change. This paper presents a case study investigating the impact of dam construction, dam removal and dam-related river bed and bank protection measures on the sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers using a combination of DEM analyses, field surveys and landscape evolution modelling. For both river systems the results revealed low sediment connectivity accompanied by a fine river bed sediment facies in river sections upstream of active dams and of removed dams with protection measures. Contrarily, high sediment connectivity which was accompanied by a coarse river bed sediment facies was observed in river sections either located downstream of active dams or of removed dams with upstream protection. In terms of channel changes, significant channel degradation was examined at locations downstream of active dams and of removed dams. Channel bed and bank protection measures prevent erosion and channel slope recovery after dam removal. Landscape evolution modeling revealed a complex geomorphic response to dam construction and dam removal as sediment output rates and therefore geomorphic processes have been shown to act in a non-linear manner. These insights are deemed to have major implications for river management and conservation, as quality and state of riverine habitats are determined by channel morphology and river bed sediment composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca's area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate potential occurrence of bacteremia in orthodontic patients after removal of miniscrews.The study group comprised 30 healthy subjects (17 males, 13 females) with a mean age of 24.1 years treated with self-ligating fixed appliances and mini-implant anchorage. Two 20 ml venous blood samples were obtained prior to and 30-60 seconds after miniscrew explantation following an aseptic technique. Blood culturing in aerobic and anaerobic conditions was carried out by means of the BACTEC blood culture analyzer. Microbiological analysis showed that none of the pre- and post-operative samples exhibited detectable bacteremia. Future research should be focused on determining the collective bacteremic effect of a sequence of orthodontic procedures including miniscrew placement or removal, typically performed during a single treatment session.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Fractured endodontic instruments inhibit optimal cleaning and filling of dental root canals, which may result in a less favorable prognosis for the tooth. Several techniques are available to remove fractured instruments; however, healthy tooth substance often must be destroyed in the process. This study was intended to evaluate Nd:YAG laser treatment as a method to remove fractured stainless steel instruments without destroying healthy tooth substance. METHOD AND MATERIALS Stainless steel endodontic instruments were fractured in 33 unprocessed root canals of mandibular central and lateral incisors and premolars in vitro. A brass tube charged with solder was placed at the coronal end of the fractured instrument and laser energy was used to melt the solder, connecting the fractured instrument with the brass tube. The success rates of connecting and removal of fractured instruments from the root channel were recorded for each case. RESULTS Connecting was achieved in every case in which more than 1.5 mm of the fractured instrument was tangible (22 out of 22). In cases where less than 1.5 mm was tangible, the rate for successful connection decreased to 4 out of 11 (36.4%). Fractured endodontic instruments were removed successfully in 17 out of 22 cases (77.3%) in which more than 1.5 mm was tangible. If less than 1.5 mm was tangible, the removal success rate decreased to 3 out of 11 cases (27.3%). CONCLUSION Our data support Nd:YAG laser-mediated connecting of a brass tube to a fractured endodontic instrument as a feasible and tissue conserving removal approach when more than 1.5 mm of the instrument is tangible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To learn upon incidence, underlying mechanisms and effectiveness of treatment strategies in patients with central airway and pulmonary parenchymal aorto-bronchial fistulation after thoracic endovascular aortic repair (TEVAR). METHODS Analysis of an international multicentre registry (European Registry of Endovascular Aortic Repair Complications) between 2001 and 2012 with a total caseload of 4680 TEVAR procedures (14 centres). RESULTS Twenty-six patients with a median age of 70 years (interquartile range: 60-77) (35% female) were identified. The incidence of either central airway (aorto-bronchial) or pulmonary parenchymal (aorto-pulmonary) fistulation (ABPF) in the entire cohort after TEVAR in the study period was 0.56% (central airway 58%, peripheral parenchymal 42%). Atherosclerotic aneurysm formation was the leading indication for TEVAR in 15 patients (58%). The incidence of primary endoleaks after initial TEVAR was n = 10 (38%), of these 80% were either type I or type III endoleaks. Fourteen patients (54%) developed central left bronchial tree lesions, 11 patients (42%) pulmonary parenchymal lesions and 1 patient (4%) developed a tracheal lesion. The recognized mechanism of ABPF was external compression of the bronchial tree in 13 patients (50%), the majority being due to endoleak formation, further ischaemia due to extensive coverage of bronchial feeding arteries in 3 patients (12%). Inflammation and graft erosion accounted for 4 patients (30%) each. Cumulative survival during the entire study period was 39%. Among deaths, 71% were attributed to ABPF. There was no difference in survival in patients having either central airway or pulmonary parenchymal ABPF (33 vs 45%, log-rank P = 0.55). Survival with a radical surgical approach was significantly better when compared with any other treatment strategy in terms of overall survival (63 vs 32% and 63 vs 21% at 1 and 2 years, respectively), as well as in terms of fistula-related survival (63 vs 43% and 63 vs 43% at 1 and 2 years, respectively). CONCLUSIONS ABPF is a rare but highly lethal complication after TEVAR. The leading mechanism behind ABPF seems to be a continuing external compression of either the bronchial tree or left upper lobe parenchyma. In this setting, persisting or newly developing endoleak formation seems to play a crucial role. Prognosis does not differ in patients with central airway or pulmonary parenchymal fistulation. Radical bronchial or pulmonary parenchymal repair in combination with stent graft removal and aortic reconstruction seems to be the most durable treatment strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE There is increasing evidence that epileptic activity involves widespread brain networks rather than single sources and that these networks contribute to interictal brain dysfunction. We investigated the fast-varying behavior of epileptic networks during interictal spikes in right and left temporal lobe epilepsy (RTLE and LTLE) at a whole-brain scale using directed connectivity. METHODS In 16 patients, 8 with LTLE and 8 with RTLE, we estimated the electrical source activity in 82 cortical regions of interest (ROIs) using high-density electroencephalography (EEG), individual head models, and a distributed linear inverse solution. A multivariate, time-varying, and frequency-resolved Granger-causal modeling (weighted Partial Directed Coherence) was applied to the source signal of all ROIs. A nonparametric statistical test assessed differences between spike and baseline epochs. Connectivity results between RTLE and LTLE were compared between RTLE and LTLE and with neuropsychological impairments. RESULTS Ipsilateral anterior temporal structures were identified as key drivers for both groups, concordant with the epileptogenic zone estimated invasively. We observed an increase in outflow from the key driver already before the spike. There were also important temporal and extratemporal ipsilateral drivers in both conditions, and contralateral only in RTLE. A different network pattern between LTLE and RTLE was found: in RTLE there was a much more prominent ipsilateral to contralateral pattern than in LTLE. Half of the RTLE patients but none of the LTLE patients had neuropsychological deficits consistent with contralateral temporal lobe dysfunction, suggesting a relationship between connectivity changes and cognitive deficits. SIGNIFICANCE The different patterns of time-varying connectivity in LTLE and RTLE suggest that they are not symmetrical entities, in line with our neuropsychological results. The highest outflow region was concordant with invasive validation of the epileptogenic zone. This enhanced characterization of dynamic connectivity patterns could better explain cognitive deficits and help the management of epilepsy surgery candidates.