998 resultados para COHERENT NUCLEAR ROTATION
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-12-05T05:05:17Z No. of bitstreams: 1 Note:A time-resolved Kerr rotation system with a rotatable in-plane magnetic field.pdf: 620425 bytes, checksum: 354584f39f341db1d35ee96d2b0fe14e (MD5)
Resumo:
Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.
Resumo:
Electron transport in quantum coherent networks (interacting quantum waveguide arrays) is investigated theoretically with use of the scattering-matrix method. The scattering matrix for the basic unit of networks, the cross junction with Square or rounded corners, is derived using the mode-matching technique, The overall scattering matrix for the network is obtained by the composition of the scattering matrices associated with each unit of the network, For a uniform network, the transmission spectra are calculated in the single-mode regime and an found notably dependent on the junction geometry. Small reflection for the input terminal and uniform output for some output ports are obtained, which means that the quantum coherent network can be used as a distributing net for the electron waves. Cross junctions with rounded corners of large radii are found to play a negative role in the device application of quantum coherent networks. (C) 1997 American Institute of Physics.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
Switchable multiwavelength fiber laser outputs with a wide tuning range are experimentally observed in an ultralong cavity. Because of the long spooled single-mode fiber and filter effect of the cavity, multiwavelength lasers with the spacing of similar to 14.5 nm are obtained. The proposed fiber laser has the capacity of simultaneously emitting the three wavelengths. By means of adjusting the polarization controllers, the arbitrary single- and dual-wavelength operations are achieved in our laser. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3485754]
Resumo:
The 3PF2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner–Hartree–Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon-nucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3PF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries.As a consequence, the neutron 3PF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.