934 resultados para CO2 absorption
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Resumo:
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
Resumo:
The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E) is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly average of ΔSST measurements). Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002) making this is a small contribution to the Atlantic carbon budget.
Resumo:
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.
Resumo:
In this contribution, we continue our exploration of the factors defining the Mesozoic climatic history. We improve the Earth system model GEOCLIM designed for long term climate and geochemical reconstructions by adding the explicit calculation of the biome dynamics using the LPJ model. The coupled GEOCLIM-LPJ model thus allows the simultaneous calculation of the climate with a 2-D spatial resolution, the coeval atmospheric CO2, and the continental biome distribution. We found that accounting for the climatic role of the continental vegetation dynamics (albedo change, water cycle and surface roughness modulations) strongly affects the reconstructed geological climate. Indeed the calculated partial pressure of atmospheric CO2 over the Mesozoic is twice the value calculated when assuming a uniform constant vegetation. This increase in CO2 is triggered by a global cooling of the continents, itself triggered by a general increase in continental albedo owing to the development of desertic surfaces. This cooling reduces the CO2 consumption through silicate weathering, and hence results in a compensating increase in the atmospheric CO2 pressure. This study demonstrates that the impact of land plants on climate and hence on atmospheric CO2 is as important as their geochemical effect through the enhancement of chemical weathering of the continental surface. Our GEOCLIM-LPJ simulations also define a climatic baseline for the Mesozoic, around which exceptionally cool and warm events can be identified.
Resumo:
We estimate aerosol absorption over the clear-sky oceans using aerosol geophysical products from POLDER-1 space measurements and absorption properties from ground-based AERONET measurements. Our best estimate is 2.5 Wm-2 averaged over the 8-month lifetime of POLDER-1. Low and high absorption estimates are 2.2 and 3.1 Wm-2 based on the variability in aerosol single scattering albedo observed by AERONET. Main sources of uncertainties are the discrimation of the aerosol type from satellite measurements, and potential clear-sky bias induced by the cloud-screening procedure.
Resumo:
Atmospheric CO2 concentration has varied from minima of 170-200 ppm in glacials to maxima of 280-300 ppm in the recent interglacials. Photosynthesis by C-3 plants is highly sensitive to CO2 concentration variations in this range. Physiological consequences of the CO2 changes should therefore be discernible in palaeodata. Several lines of evidence support this expectation. Reduced terrestrial carbon storage during glacials, indicated by the shift in stable isotope composition of dissolved inorganic carbon in the ocean, cannot be explained by climate or sea-level changes. It is however consistent with predictions of current process-based models that propagate known physiological CO2 effects into net primary production at the ecosystem scale. Restricted forest cover during glacial periods, indicated by pollen assemblages dominated by non-arboreal taxa, cannot be reproduced accurately by palaeoclimate models unless CO2 effects on C-3-C-4 plant competition are also modelled. It follows that methods to reconstruct climate from palaeodata should account for CO2 concentration changes. When they do so, they yield results more consistent with palaeoclimate models. In conclusion, the palaeorecord of the Late Quaternary, interpreted with the help of climate and ecosystem models, provides evidence that CO2 effects at the ecosystem scale are neither trivial nor transient.
Resumo:
It has been hypothesized that changes in the marine biological pump caused a major portion of the glacial reduction of atmospheric carbon dioxide by 80 to 100 parts per million through increased iron fertilization of marine plankton, increased ocean nutrient content or utilization, or shifts in dominant plankton types. We analyze sedimentary records of marine productivity at the peak and the middle of the last glacial cycle and show that neither changes in nutrient utilization in the Southern Ocean nor shifts in plankton dominance explain the CO2 drawdown. Iron fertilization and associated mechanisms can be responsible for no more than half the observed drawdown.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.