927 resultados para CEREBRAL-PALSY
Resumo:
Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.
Resumo:
Intellectual disability has long been associated with deficits in socio-emotional processing. However, studies investigating brain dynamics of maladaptive socio-emotional skills associated with intellectual disability are scarce. Here, we compared differences in brain activity between low intelligence quotient (I.Q.<75, N=13) and normal controls (N=15) while evaluating their subjective emotions. Positive (P) and negative (N) valenced pictures were presented one at a time to participants of both groups, at a rate of ¾. The task required that each participant evaluate their subjective emotion and press a predefined push-button when done, alternatively P and N. Electroencephalographic (EEG) signals were continuously recorded, and the 1000ms time window following each picture was analyzed offline for power in frequency domain. Alpha low (8-10Hz) and upper (10-13Hz) frequency bands were then compared for both groups and for both P and N emotions in 12 distributed scalp electrodes. The qualitative evaluation of emotions was similar between both groups, with constant longer reaction times for the low IQ participants. The EEG signal comparison shows marked power decrease in upper alpha frequency range for N emotions in low intelligence group. Otherwise no significant difference was noticed between low and normal IQ. Main findings of the present study are (1) results do not support the hypothesis that impairment in developmental intelligence roots in maladaptive emotional processing; (2) the strong alpha power suppression during negative-induced emotions suggests the involvement of an extended neural network and more effortful inhibition processes than positive ones. We call for further studies with a larger sample.
Resumo:
BACKGROUND: To identify patients with spontaneous subarachnoid hemorrhage for whom CT angiography alone can exclude ruptured aneurysms. METHODS: An observational retrospective review was carried out of all consecutive patients with non-traumatic subarachnoid hemorrhage who underwent both CT angiography and catheter angiography to exclude an aneurysm. CT angiography negative cases (no aneurysm) were classified according to their CT hemorrhage pattern as "aneurismal", "perimesencephalic" or as "no-hemorrhage." RESULTS: Two hundred and forty-one patients were included. A CT angiography aneurysm detection sensitivity and specificity of 96.4% and 96.0% were observed. All 35 cases of perimesencephalic or no-hemorrhage out of 78 CT angiography negatives also had negative angiography findings. CONCLUSIONS: CT angiography is self-reliant to exclude ruptured aneurysms when either a perimesencephalic hemorrhage or no-hemorrhage pattern is identified on the CT within a week of symptom onset.
Resumo:
Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.
Resumo:
Magnetic resonance imaging (MRI) and spectroscopy (MRS) allow establishing theanatomical evolution and neurochemical profiles of ischemic lesions. However onlylimited MRS studies have been reported to-date in mice due to the challenges ofMRS in small organs. The aim of the current work was to study the neurochemicaland imaging sequelae of ischemic stroke in a mouse model in a horizontal bore14.1 Tesla system.ICR-CD1 mice were subjected to 30 minute transient middle cerebral artery occlusion.The extent of the lesion was determined by MRI. The neurochemical profileconsisting of the concentrations of 22 metabolites was measured longitudinallyfollowing the recovery from ischemia at 3, 8 and 24h in the striatum.Our model produced very reproducible striatal lesions which began to appear onT2-weighted images 8h after ischemia. At 24h, they were well established andtheir size correlated with lesions measured by histology. Profound changes couldbe observed in the neurochemical profiles of the core of the striatal lesions as earlyas 3h post-ischemia, in particular, we observed elevated lactate levels, decreases inthe putative neuronal marker N-acetyl-aspartate and in glutamate, and a transienttwo-fold glutamine increase, likely linked to excitotoxic release of glutamate andconversion to glutamine. With further ischemia evolution, other changes appearedat later time-points, mainly decreases of metabolites, consistent with disruption ofcellular function. It is interesting to note that glutamine tended to return to basallevels at 24h.We conclude that early changes in markers of energy metabolism, glutamate excitotoxicityand neuronal viability can be detected with high precision non-invasively inmice following stroke. Such investigations should lead to a better understanding andinsight into the sequential early changes in the brain parenchyma after ischemia,which could be used e.g. for identifying new targets for neuroprotection.
Resumo:
The microtubule-associated protein MAP2 was studied in the developing cat visual cortex and corpus callosum. Biochemically, no MAP2a was detectable in either structure during the first postnatal month; adult cortex revealed small amounts of MAP2a. MAP2b was abundant in cortical tissue during the first postnatal month and decreased in concentration towards adulthood; it was barely detectable in corpus callosum at all ages. MAP2c was present in cortex and corpus callosum at birth; in cortex it consisted of three proteins of similar molecular weights between 65 and 70 kD. The two larger, phosphorylated forms disappeared after postnatal day 28, the smaller form after day 39. In corpus callosum, MAP2c changed from a phosphorylated to an unphosphorylated variant during the first postnatal month and then disappeared. Immunocytochemical experiments revealed MAP2 in cell bodies and dendrites of neurons in all cortical layers, from birth onwards. In corpus callosum, in the first month after birth, a little MAP2, possibly MAP2c, was detectable in axons. The present data indicate that MAP2 isoforms differ in their cellular distribution, temporal appearance and structural association, and that their composition undergoes profound changes during the period of axonal stabilization and dendritic maturation.
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
Resumo:
Background: It is unknown whether cerebral perfusion in geriatric and younger patients under general anaesthesia differs. Methods: We compared 2 groups of patients undergoing elective major non-cardiac surgery under standardized general anaesthesia (thiopental, sevoflurane, fentanyl, atracurium). Group 1: 18-40 yrs (n = 20), Group 2: >65 yrs (n = 37). Cerebral perfusion was investigated with transcranial Doppler and near-infrared spectroscopy (NIRS). Arterial blood pressure was monitored continuously with a Finapres device. Mx, an index allowing continuous monitoring of cerebrovascular autoregulation based on the changes in mean arterial blood pressure (MAP) and cerebral blood flow velocity was calculated. Data are shown as mean } SD. Results: MAP (86 } 9.6 vs 79 } 10.9 mm Hg, p = 0.02), end-tidal concentration of sevoflurane (1.9 } 0.3 vs 1.6 } 0.3%, p <0.01), and the cerebral tissue oxygenation index measured by NIRS (72 } 4 vs 68 } 5%, p = 0.01), were significantly lower in Group 2. The end-tidal concentration of O2 was significantly higher in Group 2 (46 } 4 vs 48 } 4% p = 0.04). There were no significant differences between Group 1 and 2 for cerebral blood flow velocity (41 } 10 vs 43 } 18 cm/s), end tidal CO2 (4.7 } 0.3 vs 4.6 } 0.3 kPa) and cerebrovascular autoregulation (Mx 0.42 } 0.2 vs 0.48 } 0.2). In Group 1 35% and in Group 2 43% of the patients had an index of autoregulation suggesting disturbed cerebrovascular autoregulation (p = n.s.). Conclusions: In elderly patients under general anaesthesia with sevoflurane the cerebral tissue oxygenation index was significantly lower than in younger patients despite higher end-tidal oxygen concentrations. Our data suggest subtle differences in cerebral perfusion between geriatric and younger
Resumo:
WE USED A MURINE MODEL OF TRANSIENT FOCAL CEREBRAL ISCHEMIA TO STUDY: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus.Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.
Resumo:
BACKGROUND: Carotid artery stenosis is associated with the occurrence of acute and chronic ischemic lesions that increase with age in the elderly population. Diffusion Imaging and ADC mapping may be an appropriate method to investigate patients with chronic hypoperfusion consecutive to carotid stenosis. This non-invasive technique allows to investigate brain integrity and structure, in particular hypoperfusion induced by carotid stenosis diseases. The aim of this study was to evaluate the impact of a carotid stenosis on the parenchyma using ADC mapping. METHODS: Fifty-nine patients with symptomatic (33) and asymptomatic (26) carotid stenosis were recruited from our multidisciplinary consultation. Both groups demonstrated a similar degree of stenosis. All patients underwent MRI of the brain including diffusion-weighted MR imaging with ADC mapping. Regions of interest were defined in the anterior and posterior paraventricular regions both ipsilateral and contralateral to the stenosis (anterior circulation). The same analysis was performed for the thalamic and occipital regions (posterior circulation). RESULTS: ADC values of the affected vascular territory were significantly higher on the side of the stenosis in the periventricular anterior (P<0.001) and posterior (P<0.01) area. There was no difference between ipsilateral and contralateral ADC values in the thalamic and occipital regions. CONCLUSIONS: We have shown that carotid stenosis is associated with significantly higher ADC values in the anterior circulation, probably reflecting an impact of chronic hypoperfusion on the brain parenchyma in symptomatic and asymptomatic patients. This is consistent with previous data in the literature.
Resumo:
OBJECT: Reversible cerebral vasoconstriction syndrome (RCVS) is described as a clinical and radiological entity characterized by thunderclap headaches, a reversible segmental or multifocal vasoconstriction of cerebral arteries with or without focal neurological deficits or seizures. The purpose of this study is to determine risk factors of poor outcome in patients presented a RCVS. METHODS: A retrospective multi-center review of invasive and non-invasive neurovascular imaging between January 2006 and January 2011 has identified 10 patients with criterion of reversible segmental vasoconstriction syndrome. Demographics data, vascular risks and evolution of each of these patients were analyzed. RESULTS: Seven of the ten patients were females with a mean age of 46 years. In four patients, we did not found any causative factors. Two cases presented RCVS in post-partum period between their first and their third week after delivery. The other three cases were drug-induced RCVS, mainly vaso-active drugs. Cannabis was found as the causative factor in two patient, Sumatriptan identified in one patient while cyclosporine was the causative agent in also one patient. The mean duration of clinical follow-up was 10.2 months (range: 0-28 months). Two patients had neurological sequelae: one patient kept a dysphasia and the other had a homonymous lateral hemianopia. We could not find any significant difference of the evolution between secondary RCVS and idiopathic RCVS. The only two factors, which could be correlated to the clinical outcome were the neurological status at admission and the presence of intraparenchymal abnormalities (ischemic stroke, hematoma) in brain imaging. CONCLUSIONS: Fulminant vasoconstriction resulting in progressive symptoms or death has been reported in exceptional frequency. Physicians had to remember that such evolution could happen and predict them by identifying all factors of poor prognosis (neurological status at admission, the presence of intraparenchymal abnormalities).