977 resultados para Burroughs D-machine (Computer)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis aims to support the distributed design of integrated systems and considers specifically the need for collaborative interaction among designers. Particular emphasis was given to issues which were only marginally considered in previous approaches, such as the abstraction of the distribution of design automation resources over the network, the possibility of both synchronous and asynchronous interaction among designers and the support for extensible design data models. Such issues demand a rather complex software infrastructure, as possible solutions must encompass a wide range of software modules: from user interfaces to middleware to databases. To build such structure, several engineering techniques were employed and some original solutions were devised. The core of the proposed solution is based in the joint application of two homonymic technologies: CAD Frameworks and object-oriented frameworks. The former concept was coined in the late 80's within the electronic design automation community and comprehends a layered software environment which aims to support CAD tool developers, CAD administrators/integrators and designers. The latter, developed during the last decade by the software engineering community, is a software architecture model to build extensible and reusable object-oriented software subsystems. In this work, we proposed to create an object-oriented framework which includes extensible sets of design data primitives and design tool building blocks. Such object-oriented framework is included within a CAD Framework, where it plays important roles on typical CAD Framework services such as design data representation and management, versioning, user interfaces, design management and tool integration. The implemented CAD Framework - named Cave2 - followed the classical layered architecture presented by Barnes, Harrison, Newton and Spickelmier, but the possibilities granted by the use of the object-oriented framework foundations allowed a series of improvements which were not available in previous approaches: - object-oriented frameworks are extensible by design, thus this should be also true regarding the implemented sets of design data primitives and design tool building blocks. This means that both the design representation model and the software modules dealing with it can be upgraded or adapted to a particular design methodology, and that such extensions and adaptations will still inherit the architectural and functional aspects implemented in the object-oriented framework foundation; - the design semantics and the design visualization are both part of the object-oriented framework, but in clearly separated models. This allows for different visualization strategies for a given design data set, which gives collaborating parties the flexibility to choose individual visualization settings; - the control of the consistency between semantics and visualization - a particularly important issue in a design environment with multiple views of a single design - is also included in the foundations of the object-oriented framework. Such mechanism is generic enough to be also used by further extensions of the design data model, as it is based on the inversion of control between view and semantics. The view receives the user input and propagates such event to the semantic model, which evaluates if a state change is possible. If positive, it triggers the change of state of both semantics and view. Our approach took advantage of such inversion of control and included an layer between semantics and view to take into account the possibility of multi-view consistency; - to optimize the consistency control mechanism between views and semantics, we propose an event-based approach that captures each discrete interaction of a designer with his/her respective design views. The information about each interaction is encapsulated inside an event object, which may be propagated to the design semantics - and thus to other possible views - according to the consistency policy which is being used. Furthermore, the use of event pools allows for a late synchronization between view and semantics in case of unavailability of a network connection between them; - the use of proxy objects raised significantly the abstraction of the integration of design automation resources, as either remote or local tools and services are accessed through method calls in a local object. The connection to remote tools and services using a look-up protocol also abstracted completely the network location of such resources, allowing for resource addition and removal during runtime; - the implemented CAD Framework is completely based on Java technology, so it relies on the Java Virtual Machine as the layer which grants the independence between the CAD Framework and the operating system. All such improvements contributed to a higher abstraction on the distribution of design automation resources and also introduced a new paradigm for the remote interaction between designers. The resulting CAD Framework is able to support fine-grained collaboration based on events, so every single design update performed by a designer can be propagated to the rest of the design team regardless of their location in the distributed environment. This can increase the group awareness and allow a richer transfer of experiences among them, improving significantly the collaboration potential when compared to previously proposed file-based or record-based approaches. Three different case studies were conducted to validate the proposed approach, each one focusing one a subset of the contributions of this thesis. The first one uses the proxy-based resource distribution architecture to implement a prototyping platform using reconfigurable hardware modules. The second one extends the foundations of the implemented object-oriented framework to support interface-based design. Such extensions - design representation primitives and tool blocks - are used to implement a design entry tool named IBlaDe, which allows the collaborative creation of functional and structural models of integrated systems. The third case study regards the possibility of integration of multimedia metadata to the design data model. Such possibility is explored in the frame of an online educational and training platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer-based sliding mode control (SMC) is analysed. The control law is accomplished using a computer and A/D and D/A converters. Two SMC designs are presented. The first one is a continuous-time conventional SMC design, with a variable structure law, which does not take into consideration the sampling period. The second one is a discrete-time SMC design, with a smooth sliding law, which does not have a structure variable and takes into consideration the sampling period. Both techniques are applied to control an inverted pendulum system. The performance of both the continuous-time and discrete-time controllers are compared. Simulations and experimental results are shown and the effectiveness of the proposed techniques is analysed.