699 resultados para Bulb


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In adult rodents, neural progenitor cells in the subependymal (SZ) zone of the lateral cerebral ventricle generate neuroblasts that migrate in chains via the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into interneurons. However, the existence of this neurogenic migratory system in other mammals has remained unknown. Here, we report the presence of a homologue of the rodent SZ/RMS in the adult macaque monkey, a nonhuman Old World primate with a relatively smaller OB. Our results—obtained by using combined immunohistochemical detection of a marker for DNA replication (5-bromodeoxyuridine) and several cell type-specific markers—indicate that dividing cells in the adult monkey SZ generate neuroblasts that undergo restricted chain migration over an extended distance of more than 2 cm to the OB and differentiate into granule interneurons. These findings in a nonhuman primate extend and support the use of the SZ/RMS as a model system for studying neural regenerative mechanisms in the human brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions, relative to the others. In situ hybridization performed on a subset of amygdala-enriched genes confirmed in most cases the overall region-specificity predicted by the microarray data and identified additional sites of brain expression not examined on the microarrays. Strikingly, the majority of these genes exhibited boundaries of expression within the amygdala corresponding to cytoarchitectonically defined subnuclei. These results define a unique set of molecular markers for amygdaloid subnuclei and provide tools to genetically dissect their functional roles in different emotional behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluoxetine administered intraperitoneally to sham-operated or adrenalectomized/castrated (ADX/CX) male rats dose-dependently (2.9-58 mumol/kg i.p.) increased the brain content of the neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone, 3 alpha, 5 alpha-TH PROG). The increase of brain 3 alpha, 5 alpha-TH PROG content elicited by 58 mumol/kg fluoxetine lasted more than 2 hr and the range of its extent was comparable in sham-operated (approximately 3-10 pmol/g) and ADX/CX rats (2-9 pmol/g) and was associated with a decrease (from 2.8 to 1.1 pmol/g) in the 5 alpha-pregnan-3,20-dione (5 alpha-dihydroprogesterone, 5 alpha-DH PROG) content. The pregnenolone, progesterone, and dehydroepiandrosterone content failed to change in rats receiving fluoxetine. The extent of 3 alpha, 5 alpha-TH PROG accumulation elicited by fluoxetine treatment differed in various brain regions, with the highest increase occurring in the olfactory bulb. Importantly, fluoxetine failed to change the 3 alpha, 5 alpha-TH PROG levels in plasma, which in ADX/CX rats were at least two orders of magnitude lower than in the brain. Two other serotonin re-uptake inhibitors, paroxetine and imipramine, in doses equipotent to those of fluoxetine in inhibiting brain serotonin uptake, were either significantly less potent than fluoxetine (paroxetine) or failed to increase (imipramine) 3 alpha, 5 alpha-TH PROG brain content. The addition of 10 microM of 5 alpha-DH PROG to brain slices of ADX/CX rats preincubated with fluoxetine (10 microM, 15 min) elicited an accumulation of 3 alpha, 5 alpha-TH PROG greater than in slices preincubated with vehicle. A fluoxetine stimulation of brain 3 alpha, 5 alpha-TH PROG biosynthesis might be operative in the anxiolytic and antidysphoric actions of this drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precursor cells found in the subventricular zone (SVZ) of the adult brain can undergo cell division and migrate long distances before differentiating into mature neurons. We have investigated the possibility of introducing genes stably into this population of cells. Replication-defective adenoviruses were injected into the SVZ of the lateral ventricle of adult mice. The adenoviruses carried a cDNA for the LacZ reporter or the human p75 neurotrophin receptor, for which species-specific antibodies are available. Injection of the viruses into the SVZ led to efficient labeling of neuronal precursors. Two months after viral injection, infected cells were detected in the olfactory bulb, a significant distance from the site of injection. Labeled periglomerular and granular neurons with extensive dendritic arborization were found in the olfactory bulb. These results demonstrate that foreign genes can be efficiently introduced into neuronal precursor cells. Furthermore, adenovirus-directed infection can lead to long-term stable gene expression in progenitor cells found in the adult central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several P2X receptor subunits were recently cloned; of these, one was cloned from the rat vas deferens (P2X1) and another from pheochromocytoma (PC12) cells differentiated with nerve growth factor (P2X2). Peptides corresponding to the C-terminal portions of the predicted receptor proteins (P2X1 391-399 and P2X2 460-472) were used to generate antisera in rabbits. The specificities of antisera were determined by staining human embryonic kidney cells stably transfected with either P2X1 or P2X2 receptors and by absorption controls with the cognate peptides. In the vas deferens and the ileal submucosa, P2X1 immunoreactivity (ir) was restricted to smooth muscle, whereas P2X2-ir was restricted to neurons and their processes. Chromaffin cells of the adrenal medulla and PC12 cells contained both P2X1- and P2X2-ir. P2X1-ir was also found in smooth muscle cells of the bladder, cardiac myocytes, and nerve fibers and terminals in the superficial dorsal horn of the spinal cord. In contrast, P2X2-ir was observed in scattered cells of the anterior pituitary, neurons in the hypothalamic arcuate and paraventricular nuclei, and catecholaminergic neurons in the olfactory bulb, the substantia nigra, ventral tegmental area, and locus coeruleus. A plexus of nerve fibers and terminals in the nucleus of the solitary tract contained P2X2-ir. This staining disappeared after nodose ganglionectomy, consistent with a presynaptic function. The location of the P2X1 subunit in smooth muscle is consistent with its role as a postjunctional receptor in autonomic transmission, while in neurons, these receptors appear in both postsynaptic and presynaptic locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington disease stems from a mutation of the protein huntingtin and is characterized by selective loss of discrete neuronal populations in the brain. Despite a massive loss of neurons in the corpus striatum, NO-generating neurons are intact. We recently identified a brain-specific protein that associates with huntingtin and is designated huntingtin-associated protein (HAP1). We now describe selective neuronal localizations of HAP1. In situ hybridization studies reveal a resemblance of HAP1 and neuronal nitric oxide synthase (nNOS) mRNA localizations with dramatic enrichment of both in the pedunculopontine nuclei, the accessory olfactory bulb, and the supraoptic nucleus of the hypothalamus. Both nNOS and HAP1 are enriched in subcellular fractions containing synaptic vesicles. Immunocytochemical studies indicate colocalizations of HAP1 and nNOS in some neurons. The possible relationship of HAP1 and nNOS in the brain is reminiscent of the relationship of dystrophin and nNOS in skeletal muscle and suggests a role of NO in Huntington disease, analogous to its postulated role in Duchenne muscular dystrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubules play an important role in establishing cellular architecture. Neuronal microtubules are considered to have a role in dendrite and axon formation. Different portions of the developing and adult brain microtubules are associated with different microtubule-associated proteins (MAPs). The roles of each of the different MAPs are not well understood. One of these proteins, MAP1B, is expressed in different portions of the brain and has been postulated to have a role in neuronal plasticity and brain development. To ascertain the role of MAP1B, we generated mice which carry an insertion in the gene by gene-targeting methods. Mice which are homozygous for the modification die during embryogenesis. The heterozygotes exhibit a spectrum of phenotypes including slower growth rates, lack of visual acuity in one or both eyes, and motor system abnormalities. Histochemical analysis of the severely affected mice revealed that their Purkinje cell dendritic processes are abnormal, do not react with MAP1B antibodies, and show reduced staining with MAP1A antibodies. Similar histological and immunochemical changes were observed in the olfactory bulb, hippocampus, and retina, providing a basis for the observed phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have been studying the role and mechanism of estrogen action in the survival and differentiation of neurons in the basal forebrain and its targets in the cerebral cortex, hippocampus, and olfactory bulb. Previous work has shown that estrogen-target neurons in these regions widely coexpress the mRNAs for the neurotrophin ligands and their receptors, suggesting a potential substrate for estrogen-neurotrophin interactions. Subsequent work indicated that estrogen regulates the expression of two neurotrophin receptor mRNAs in prototypic peripheral neural targets of nerve growth factor. We report herein that the gene encoding the neurotophin brain-derived neurotrophic factor (BDNF) contains a sequence similar to the canonical estrogen response element found in estrogen-target genes. Gel shift and DNA footprinting assays indicate that estrogen receptor-ligand complexes bind to this sequence in the BDNF gene. In vivo, BDNF mRNA was rapidly up-regulated in the cerebral cortex and the olfactory bulb of ovariectomized animals exposed to estrogen. These data suggest that estrogen may regulate BDNF transcription, supporting our hypothesis that estrogen may be in a position to influence neurotrophin-mediated cell functioning, by increasing the availability of specific neurotrophins in forebrain neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O uso da irrigação em cafeeiro é uma tecnologia que vem se consolidando e mostrando-se economicamente viável ao longo dos tempos, trazendo junto com ela a técnica da fertirrigação. Desta forma, o presente estudo teve como objetivo avaliar a influência de formas de aplicação e fontes de fertilizantes sobre a condutividade elétrica e pH da solução do solo, bem como no desenvolvimento e produção do café conilon irrigado por gotejamento. O trabalho foi desenvolvido em São Gabriel da Palha, Espírito Santo, utilizando o clone 12V da variedade INCAPER 8142. O experimento foi delineado em blocos ao acaso (DBC) com seis tratamentos e quatro blocos. Os tratamentos adotados foram: T1 - Controle - adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio; T2 - Adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio de liberação controlada; T3 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes ureia e cloreto de potássio; T4 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes nitrato de amônio e sulfato de potássio; T5 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes nitrato de amônio e nitrato de potássio; T6 - Adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio de liberação controlada no período de outubro a março (período chuvoso) e adubação nitrogenada e potássica aplicada via fertirrigação, nas fontes nitrato de amônio e sulfato de potássio no período de abril a setembro (período seco). Foi monitorado o pH e condutividade elétrica da solução do solo, avaliações biométricas das plantas tais como altura, comprimento do primeiro ramo plagiotrópico e número de nós no primeiro ramo plagiotrópico, além da produção por planta e estimativa de produtividade. Os tratamentos T1 e T3 que utilizaram ureia e cloreto de potássio e o T4 - nitrato de amônio e sulfato de potássio disponibilizaram maiores quantidade de nitrogênio na forma amoniacal, causando maior acidificação do bulbo. Em contrapartida os tratamentos T2, T5 e T6 apresentaram menor acidificação, com diferença estatística significativa na variação do pH nas duas profundidades analisadas a partir de 18 meses da aplicação dos tratamentos. Nos tratamentos T2 e T6 observou-se menor salinidade inicial na avaliação aos 90 dias após o plantio através da leitura da condutividade elétrica da solução do solo. Para as avaliações biométricas, os tratamentos T2, T4, T5 e T6 diferiram estatisticamente dos tratamentos T1 e T3, influenciando positivamente à altura de plantas, comprimento e número de nós no primeiro ramo plagiotrópico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The African cichlid Oreochromis mossambicus (Mozambique tilapia) has been used as a model system in a wide range of behavioural and neurobiological studies. The increasing number of genetic tools available for this species, together with the emerging interest in its use for neurobiological studies, increased the need for an accurate hodological mapping of the tilapia brain to supplement the available histological data. The goal of our study was to elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, supported by Nissl staining. Resulting images were viewed and analysed in all orientations (transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using this fish model and will certainly expand their use in future studies regarding the central nervous system.