839 resultados para Building Design
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
Single crystal X-ray diffraction studies show that the three designed tripeptides Boc-Leu-Aib-m-NA-NO2 (I), Boc-Phe-Aib-m-NA-NO2 (II) and Boc-Pro-Aib-m-ABA-OMe (III) (Aib, -aminoisobutyric acid; m-NA, m-nitroaniline; m-ABA, m-aminobenzoic acid; Boc, t-butyloxycarbonyl) containing aromatic rings in the backbones adopt -turn structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of -sheets. Solvent-dependent NMR titration and CD studies show that the -turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic and transmission electron microscopic images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through -sheet mediated self-assembly of the preorganised -turn building blocks.
Resumo:
Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.
Resumo:
Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.
Resumo:
Conducts a study into how contrast could be established when using colours frequently used in everyday environments, and how different adjacent colours had to be in terms of chromaticity, saturation and/or hue in order for a difference to be discerned between them by fully sighted people and most visually impaired people. Location within a building where contrast would have the greatest benefits is considered. Relates the philosophy behind design procedures and decisions to meet the objectives.
Resumo:
This paper presents a multicriteria decision-making model for lifespan energy efficiency assessment of intelligent buildings (IBs). The decision-making model called IBAssessor is developed using an analytic network process (ANP) method and a set of lifespan performance indicators for IBs selected by a new quantitative approach called energy-time consumption index (ETI). In order to improve the quality of decision-making, the authors of this paper make use of previous research achievements including a lifespan sustainable business model, the Asian IB Index, and a number of relevant publications. Practitioners can use the IBAssessor ANP model at different stages of an IB lifespan for either engineering or business oriented assessments. Finally, this paper presents an experimental case study to demonstrate how to use IBAssessor ANP model to solve real-world design tasks.
Resumo:
We use a detailed study of the knowledge work around visual representations to draw attention to the multidimensional nature of `objects'. Objects are variously described in the literatures as relatively stable or in flux; as abstract or concrete; and as used within or across practices. We clarify these dimensions, drawing on and extending the literature on boundary objects, and connecting it with work on epistemic and technical objects. In particular, we highlight the epistemic role of objects, using our observations of knowledge work on an architectural design project to show how, in this setting, visual representations are characterized by a `lack' or incompleteness that precipitates unfolding. The conceptual design of a building involves a wide range of technical, social and aesthetic forms of knowledge that need to be developed and aligned. We explore how visual representations are used, and how these are meaningful to different stakeholders, eliciting their distinct contributions. As the project evolves and the drawings change, new issues and needs for knowledge work arise. These objects have an `unfolding ontology' and are constantly in flux, rather than fully formed. We discuss the implications for wider understandings of objects in organizations and for how knowledge work is achieved in practice.
Resumo:
The realisation that much of conventional. modern architecture is not sustainable over the long term is not new. Typical approaches are aimed at using energy and materials more efficiently. However, by clearly understanding the natural processes and their interactions with human needs in view, designers can create buildings that are delightful. functional productive and regenerative by design. The paper aims to review the biomimetics literature that is relevant to building materials and design. Biomimetics is the abstraction of good design from Nature, an enabling interdisciplinary science. particularly interested in emerging properties of materials and structures as a result of their hierarchical organisation. Biomimetics provides ideas relevant to: graded functionality of materials (nano-scale), adaptive response (nano-, micro-. and macro-scales): integrated intelligence (sensing and actuation at all scales), architecture and additional functionality. There are many examples in biology where emergent response of plants and animals to temperature, humidity and other changes in their physical environments is based on relatively simple physical principles. However, the implementation of design solutions which exploit these principles is where inspiration for man-made structures should be. We analyse specific examples of sustainability from Nature and the benefits or value that these solutions have brought to different creatures. By doing this, we appreciate how the natural world fits into the world of sustainable buildings and how as building engineers we can value its true application in delivering sustainable building.
Resumo:
Building services are worth about 2% GDP and are essential for the effective and efficient operations of the building. It is increasingly recognised that the value of a building is related to the way it supports the client organisation’s ongoing business operations. Building services are central to the functional performance of buildings and provide the necessary conditions for health, well-being, safety and security of the occupants. They frequently comprise several technologically distinct sub-systems and their design and construction requires the involvement of numerous disciplines and trades. Designers and contractors working on the same project are frequently employed by different companies. Materials and equipment is supplied by a diverse range of manufacturers. Facilities managers are responsible for operation of the building service in use. The coordination between these participants is crucially important to achieve optimum performance, but too often is neglected. This leaves room for serious faults. The need for effective integration is important. Modern technology offers increasing opportunities for integrated personal-control systems for lighting, ventilation and security as well as interoperability between systems. Opportunities for a new mode of systems integration are provided by the emergence of PFI/PPP procurements frameworks. This paper attempts to establish how systems integration can be achieved in the process of designing, constructing and operating building services. The essence of the paper therefore is to envisage the emergent organisational responses to the realisation of building services as an interactive systems network.
Resumo:
Purpose – This paper proposes assessing the context within which integrated logistic support (ILS) can be implemented for whole life performance of building services systems. Design/methodology/approach – The use of ILS within a through-life business model (TLBM) is a better framework to achieve a well-designed, constructed and managed product. However, for ILS to be implemented in a TLBM for building services systems, the practices, tools and techniques need certain contextual prerequisites tailored to suit the construction industry. These contextual prerequisites are discussed. Findings – The case studies conducted reinforced the contextual importance of prime contracting, partnering and team collaboration for the application of ILS techniques. The lack of data was a major hindrance to the full realisation of ILS techniques within the case studies. Originality/value – The paper concludes with the recognition of the value of these contextual prerequisites for the use of ILS techniques within the building industry.
Inclusive environments and inclusive design: New dimensions and priorities for construction research