943 resultados para Branch and bounds


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the diversity-multiplexing gain tradeoff (DMT) of single-source, single-sink (ss-ss), multihop relay networks having slow-fading links is studied. In particular, the two end-points of the DMT of ss-ss full-duplex networks are determined, by showing that the maximum achievable diversity gain is equal to the min-cut and that the maximum multiplexing gain is equal to the min-cut rank, the latter by using an operational connection to a deterministic network. Also included in the paper, are several results that aid in the computation of the DMT of networks operating under amplify-and-forward (AF) protocols. In particular, it is shown that the colored noise encountered in amplify-and-forward protocols can be treated as white for the purpose of DMT computation, lower bounds on the DMT of lower-triangular channel matrices are derived and the DMT of parallel MIMO channels is computed. All protocols appearing in the paper are explicit and rely only upon AF relaying. Half-duplex networks and explicit coding schemes are studied in a companion paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The throughput-optimal discrete-rate adaptation policy, when nodes are subject to constraints on the average power and bit error rate, is governed by a power control parameter, for which a closed-form characterization has remained an open problem. The parameter is essential in determining the rate adaptation thresholds and the transmit rate and power at any time, and ensuring adherence to the power constraint. We derive novel insightful bounds and approximations that characterize the power control parameter and the throughput in closed-form. The results are comprehensive as they apply to the general class of Nakagami-m (m >= 1) fading channels, which includes Rayleigh fading, uncoded and coded modulation, and single and multi-node systems with selection. The results are appealing as they are provably tight in the asymptotic large average power regime, and are designed and verified to be accurate even for smaller average powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a(1), b(1)] x [a(2), b(2)] x ... x [a(k), b(k)]. The boxicity of G, box(G), is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes; i.e., each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset, where S is the ground set and P is a reflexive, antisymmetric and transitive binary relation on S. The dimension of P, dim(P), is the minimum integer t such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P; i.e., S is the vertex set and two vertices are adjacent if and only if they are comparable in P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. It immediately follows that if P is a height-2 poset, then box(G(P)) <= dim(P) <= 2box(G(P)) since the underlying comparability graph of a height-2 poset is a bipartite graph. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with the extended double cover of G, denoted as G(c): Note that G(c) is a bipartite graph with partite sets A and B which are copies of V (G) such that, corresponding to every u is an element of V (G), there are two vertices u(A) is an element of A and u(B) is an element of B and {u(A), v(B)} is an edge in G(c) if and only if either u = v or u is adjacent to v in G. Let P(c) be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P(c)) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) = 2 tree width (G(P)) + 4, since boxicity of any graph is known to be at most its tree width + 2. In the other direction, using the already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta), which is an improvement over the best-known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-is an element of)) for any is an element of > 0 unless NP = ZPP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given two independent Poisson point processes Phi((1)), Phi((2)) in R-d, the AB Poisson Boolean model is the graph with the points of Phi((1)) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Phi((2)). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d >= 2 and derive bounds fora critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and tau n in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two online algorithms for maintaining a topological order of a directed n-vertex acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm handles m arc additions in O(m(3/2)) time. For sparse graphs (m/n = O(1)), this bound improves the best previous bound by a logarithmic factor, and is tight to within a constant factor among algorithms satisfying a natural locality property. Our second algorithm handles an arbitrary sequence of arc additions in O(n(5/2)) time. For sufficiently dense graphs, this bound improves the best previous bound by a polynomial factor. Our bound may be far from tight: we show that the algorithm can take Omega(n(2)2 root(2lgn)) time by relating its performance to a generalization of the k-levels problem of combinatorial geometry. A completely different algorithm running in Theta (n(2) log n) time was given recently by Bender, Fineman, and Gilbert. We extend both of our algorithms to the maintenance of strong components, without affecting the asymptotic time bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The factorization theorem for exclusive processes in perturbative QCD predicts the behavior of the pion electromagnetic form factor F(t) at asymptotic spacelike momenta t(= -Q(2)) < 0. We address the question of the onset energy using a suitable mathematical framework of analytic continuation, which uses as input the phase of the form factor below the first inelastic threshold, known with great precision through the Fermi-Watson theorem from pi pi elastic scattering, and the modulus measured from threshold up to 3 GeV by the BABAR Collaboration. The method leads to almost model-independent upper and lower bounds on the spacelike form factor. Further inclusion of the value of the charge radius and the experimental value at -2.45 GeV2 measured at JLab considerably increases the strength of the bounds in the region Q(2) less than or similar to 10 GeV2, excluding the onset of the asymptotic perturbative QCD regime for Q(2) < 7 GeV2. We also compare the bounds with available experimental data and with several theoretical models proposed for the low and intermediate spacelike region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constraint complexity of a graphical realization of a linear code is the maximum dimension of the local constraint codes in the realization. The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parameterization of the maximum-likelihood decoding complexity for linear codes. In this paper, we show the surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complexity) of any of its trellis realizations. From this, we obtain exact expressions for the treewidth of these codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic K l3 decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of Kπ form factors up to an energy t in = 1GeV 2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The K pi form factors are investigated at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using as input the values of the form factors at t = 0, and at the Callan-Treiman point in the scalar case, stringent constraints are obtained on the slope and curvature parameters of the Taylor expansion at the origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate upper and lower bounds on the modulus of the pion electromagnetic form factor on the unitarity cut below the omega pi inelastic threshold, using as input the phase in the elastic region known via the Fermi-Watson theorem from the pi pi P-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t = 0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistency checks on the recent experimental data on the modulus available below the omega pi threshold from e(+)e(-) annihilation and tau-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.