901 resultados para Braking In a Turn.
Resumo:
Previous studies have examined the arrangement of regulatory elements along the apolipoprotein B (apoB) promoter region (-3067 to +940) and a promoter fragment extending from nucleotides -150 to +124 has been demonstrated to be essential for transcriptional activation of the apoB gene in hepatic and intestinal cells. It has also been shown that transcriptional activation of apoB requires a synergistic interaction between hepatic nuclear factor-4 (HNF-4) and CCAAT/enhancer-binding protein a (C/EBPa) transcription factors. Here, we have examined the hypothesis that HNF-4 factor binding to DNA may induce a DNA helix bend, thus facilitating the communication with a C/EBPa factor located one helix turn from this HNF-4 factor in the apoB promoter. A gel electrophoretic mobility shift assay using wild type double-stranded oligonucleotides or modified wild type duplex oligonucleotides with 10 nucleotides inserted between HNF-4 and C/EBPa factor motifs showed similar retarded complexes, indicating that HNF-4 and C/EBPa factors interact independently of the distance between binding sites. However, when only one base, a thymidine, was inserted at the -71 position of the apoB promoter, the complex shift was completely abolished. In conclusion, these results regarding the study of the mechanisms involving the interaction between HNF-4 and C/EBPa factors in the apoB promoter suggest that the perfect 5'-CCCTTTGGA-3' motif is needed in order to facilitate the interaction between the two factors.
Resumo:
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.
Resumo:
The authors review environmental and neurodevelopmental risk factors for schizophrenic disorders, with emphasis on minor physical anomalies, particularly craniofacial anomalies and dermatoglyphic variations. The high prevalence of these anomalies among schizophrenic subjects supports the neurodevelopmental theory of the etiology of schizophrenia, since they suggest either genetically or epigenetically controlled faulty embryonic development of structures of ectodermal origin like brain and skin. This may disturb neurodevelopment that in turn may cause these subjects to be at increased risk for the development of schizophrenia and related disorders. The precise confirmation of this theory, at least in some cases, will provide further understanding of these illnesses, allowing easy and inexpensive identification of subjects at risk and providing guidelines for the development of new pharmacological interventions for early treatment and even for primary prevention of the illness.
Resumo:
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.
Resumo:
Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.
Resumo:
Cement industry significantly associated with high greenhouse gas (GHG) emissions. Considering the environmental impact, particularly global warming potential, it is important to reduce these emissions to air. The aim of the study is to investigate the mitigation possibility of GHG emissions in Ethiopian cement industry. Life cycle assessment (LCA) method used to identify and quantify GHG emissions during one ton of ordinary portland cement (OPC) production. Three mitigation scenarios: alternative fuel use, clinker substitution and thermal energy efficiency were applied on a representative gate-to-gate flow model developed with GaBi 6 software. The results of the study indicate that clinker substitution and alternative fuel use play a great role for GHG emissions mitigation with affordable cost. Applying most energy efficient kiln technology, which in turn reduces the amount of thermal energy use, has the least GHG emissions reduction intensity and high implementation cost comparing to the other scenarios. It was found that the cumulative GHG emissions mitigation potential along with other selected mitigation scenarios can be at least 48.9% per ton of cement production.
Resumo:
There is currently little empirical knowledge regarding the construction of a musician’s identity and social class. With a theoretical framework based on Bourdieu’s (1984) distinction theory, Bronfenbrenner’s (1979) theory of ecological systems, and the identity theories of Erikson (1950; 1968) and Marcia (1966), a survey called the Musician’s Social Background and Identity Questionnaire (MSBIQ) is developed to test three research hypotheses related to the construction of a musician’s identity, social class and ecological systems of development. The MSBIQ is administered to the music students at Sibelius Academy of the University of Arts Helsinki and Helsinki Metropolia University of Applied Sciences, representing the ’highbrow’ and the ’middlebrow’ samples in the field of music education in Finland. Acquired responses (N = 253) are analyzed and compared with quantitative methods including Pearson’s chi-square test, factor analysis and an adjusted analysis of variance (ANOVA). The study revealed that (1) the music students at Sibelius Academy and Metropolia construct their subjective musician’s identity differently, but (2) social class does not affect this identity construction process significantly. In turn, (3) the ecological systems of development, especially the individual’s residential location, do significantly affect the construction of a musician’s identity, as well as the age at which one starts to play one’s first musical instrument. Furthermore, a novel finding related to the structure of a musician’s identity was the tripartite model of musical identity consisting of the three dimensions of a musician’s identity: (I) ’the subjective dimension of a musician’s identity’, (II) ’the occupational dimension of a musician’s identity’ and, (III) ’the conservative-liberal dimension of a musician’s identity’. According to this finding, a musician’s identity is not a uniform, coherent entity, but a structure consisting of different elements continuously working in parallel within different dimensions. The results and limitations related to the study are discussed, as well as the objectives related to future studies using the MSBIQ to research the identity construction and social backgrounds of a musician or other performing artists.
Resumo:
Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg-1 day-1 intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3% for piplartine and 55.1 and 56.8% for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.
Resumo:
Several methods are used to estimate anaerobic threshold (AT) during exercise. The aim of the present study was to compare AT obtained by a graphic visual method for the estimate of ventilatory and metabolic variables (gold standard), to a bi-segmental linear regression mathematical model of Hinkley's algorithm applied to heart rate (HR) and carbon dioxide output (VCO2) data. Thirteen young (24 ± 2.63 years old) and 16 postmenopausal (57 ± 4.79 years old) healthy and sedentary women were submitted to a continuous ergospirometric incremental test on an electromagnetic braking cycloergometer with 10 to 20 W/min increases until physical exhaustion. The ventilatory variables were recorded breath-to-breath and HR was obtained beat-to-beat over real time. Data were analyzed by the nonparametric Friedman test and Spearman correlation test with the level of significance set at 5%. Power output (W), HR (bpm), oxygen uptake (VO2; mL kg-1 min-1), VO2 (mL/min), VCO2 (mL/min), and minute ventilation (VE; L/min) data observed at the AT level were similar for both methods and groups studied (P > 0.05). The VO2 (mL kg-1 min-1) data showed significant correlation (P < 0.05) between the gold standard method and the mathematical model when applied to HR (r s = 0.75) and VCO2 (r s = 0.78) data for the subjects as a whole (N = 29). The proposed mathematical method for the detection of changes in response patterns of VCO2 and HR was adequate and promising for AT detection in young and middle-aged women, representing a semi-automatic, non-invasive and objective AT measurement.
Resumo:
Our objective was to clone, express and characterize adult Dermatophagoides farinae group 1 (Der f 1) allergens to further produce recombinant allergens for future clinical applications in order to eliminate side reactions from crude extracts of mites. Based on GenBank data, we designed primers and amplified the cDNA fragment coding for Der f 1 by nested-PCR. After purification and recovery, the cDNA fragment was cloned into the pMD19-T vector. The fragment was then sequenced, subcloned into the plasmid pET28a(+), expressed in Escherichia coli BL21 and identified by Western blotting. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Sequence analysis showed the presence of an open reading frame containing 966 bp that encodes a protein of 321 amino acids. Interestingly, homology analysis showed that the Der p 1 shared more than 87% identity in amino acid sequence with Eur m 1 but only 80% with Der f 1. Furthermore, phylogenetic analyses suggested that D. pteronyssinus was evolutionarily closer to Euroglyphus maynei than to D. farinae, even though D. pteronyssinus and D. farinae belong to the same Dermatophagoides genus. A total of three cysteine peptidase active sites were found in the predicted amino acid sequence, including 127-138 (QGGCGSCWAFSG), 267-277 (NYHAVNIVGYG) and 284-303 (YWIVRNSWDTTWGDSGYGYF). Moreover, secondary structure analysis revealed that Der f 1 contained an a helix (33.96%), an extended strand (17.13%), a ß turn (5.61%), and a random coil (43.30%). A simple three-dimensional model of this protein was constructed using a Swiss-model server. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Alignment and phylogenetic analysis suggests that D. pteronyssinus is evolutionarily more similar to E. maynei than to D. farinae.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
The objective of this study was to investigate the occurrence of vancomycin-resistant Enterococcus (VRE) cross-transmission between two patient groups (long-term dialysis and kidney transplant patients). Molecular typing, by automated ribotyping with the RiboPrinter Microbial Characterization System (Qualicon, USA), was used to analyze VRE isolates from 31 fecal samples of 320 dialysis patients and 38 fecal samples of 280 kidney transplant patients. Clonal spread of E. faecalis and E. casseliflavus was observed intragroup, but not between the two groups of patients. In turn, transmission of E. gallinarum and E. faecium between the groups was suggested by the finding of vancomycin-resistant isolates belonging to the same ribogroup in both dialysis and transplant patients. The fact that these patients were colonized by VRE from the same ribogroup in the same health care facility provides evidence for cross-transmission and supports the adoption of stringent infection control measures to prevent dissemination of these bacteria.
Resumo:
Freezing of gait (FOG) can be assessed by clinical and instrumental methods. Clinical examination has the advantage of being available to most clinicians; however, it requires experience and may not reveal FOG even for cases confirmed by the medical history. Instrumental methods have an advantage in that they may be used for ambulatory monitoring. The aim of the present study was to describe and evaluate a new instrumental method based on a force sensitive resistor and Pearson's correlation coefficient (Pcc) for the assessment of FOG. Nine patients with Parkinson's disease in the "on" state walked through a corridor, passed through a doorway and made a U-turn. We analyzed 24 FOG episodes by computing the Pcc between one "regular/normal" step and the rest of the steps. The Pcc reached ±1 for "normal" locomotion, while correlation diminished due to the lack of periodicity during FOG episodes. Gait was assessed in parallel with video. FOG episodes determined from the video were all detected with the proposed method. The computed duration of the FOG episodes was compared with those estimated from the video. The method was sensitive to various types of freezing; although no differences due to different types of freezing were detected. The study showed that Pcc analysis permitted the computerized detection of FOG in a simple manner analogous to human visual judgment, and its automation may be useful in clinical practice to provide a record of the history of FOG.
Resumo:
We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.
Resumo:
Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of multiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data suggesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock.