944 resultados para Bis(2-ethylhexyl)amine
Resumo:
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.
Resumo:
A new tri-functional ligand (Bu2NCOCH2SO2CH2CONBu2)-Bu-i-Bu-i (L) was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, (HNMR)-H-1, ES-MS, TG and elemental analysis methods. The structure of the compound [UO2(NO3)(2)L] was determined by single crystal X-ray diffraction techniques. In the structure the uranium(VI) ion is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Four oxygen atoms from two nitrate groups and two oxygen atoms from the ligand form a planar hexagon. The ligand acts as a bidentate chelate and bonds through both the carbamoyl groups to the uranyl nitrate. An ES-MS spectrum shows that the complex retains the bonding in solution. The compound displayed vibronically coupled fluorescence emission.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
Copolycondensation of N,N’-bis(4-hydroxybutyl)-biphenyl-3,4,3',4'-tetracarboxylic diimide at 20 and 25 mol% with bis(4-hydroxybutyl)-2,6-naphthalate produces PBN-based copoly(ester-imide)s that not only crystallise but also form a (smectic) mesophase upon cooling from the melt. Incorporation of 25 mol% imide in PBN causes the glass transition temperature (measured by DSC) to rise from 51 to 74 °C, a significant increase relative to PBN. Furthermore, increased storage- (G'), loss- (G'') and elastic (E) moduli are observed for both copoly(ester-imide)s when compared to PBN itself. Structural analysis of the 20 mol% copolymer by X-ray powder and fibre diffraction, interfaced to computational modelling, suggests a crystal structure related to that of α-PBN, in space group P-1, with cell dimensions a = 4.74, b = 6.38, c = 14.45 Å, α = 106.1, β = 122.1, γ = 97.3°, ρ = 1.37 g cm-3.
Resumo:
The synthesis and characterisation of a hybrid supertetrahedral nanocluster, [Ga10S16(NC7H9)4]2−, in which the terminal S2− anions have been replaced by covalently bonded amine molecules, is described.
Resumo:
Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)
Resumo:
One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.
Resumo:
We report a pump-probe study of the two-photon induced reflectivity changes in bis (n-butylimido) perylene thin films. To enhance the two-photon excitation we deposited bis (n-butylimido) perylene films on top of gold nanoislands. The observed transient response in the reflectivity spectrum of bis (n-butylimido) perylene is due to a depletion of the molecule`s ground state and excited state absorption.
Resumo:
This study presents the syntheses and characterization of 2-mercaptopyridine (pyS(-)) complexes containing ruthenium(II) with the following general formula [Ru(pyS)(2)(P-P)], P-P = (c-dppen) = cis-1,2-bis(diphenylphosphino)ethylene) (1); (dppe)=1,2-bis(diphenylphosphino)ethane (2); (dppp)=1,3-bis(diphenylphosphino)propane (3) and (dppb) = 1,4-bis(diphenylphosphino)butane (4). The complexes were synthesized from the mer- or fac-[RuCl(3)(NO)(P-P)] precursors in the presence of triethylamine in methanol solution with dependence of the product on the P-P ligand. The reaction of pyS- with a ruthenium complex containing a bulky aromatic diphosphine dppb disclosed a major product with a dangling coordinated dppbO-P, the [Ru(pyS)(2)(NO)(eta(1)-dppbO-P)]PF(6) (5). In addition, this work also presents and discusses the spectroscopic and electrochemical behavior of 1-5. and report the X-ray structures for I and S. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
The reaction of cis-[RuCl2(dppb)(N-N)], dppb = 1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe(2), 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe(2))(dppb)(N-N)]PF6, N-N = bipy (1) and Me-bipy (2), bipy = 2,2`-bipyridine and Me-bipy = 4,4`dimethyl-2,2`-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl2(dppb)(N-N)], N-N = bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe(2). The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC50 values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25 mu g/mL, compared to the free ligands (MIC of 25 to >50 mu g/mL) and the drugs used to treat tuberculosis. Complexes I and 2 also showed promising antitumor activity, with IC50 values of 0.46 +/- 0.02 and 0.43 +/- 0.08 mu M, respectively, against MDA-MB-231 breast tumor cells. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The complex mer-[RuCl(3)(dppb)(H(2)O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl(2)(CO)(2)(dppb)], ct-[RuCl(2)(CO)(2)(dppb)]. cis-[RuCl(2)(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl(2)(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-beta-D-glucoside) complexes. For the synthesis of Run complexes, the Ru(III) atom in mer-[RuCl(3)(dppb)(H(2)O)] may be reduced by H(2)(g), forming the intermediate [Ru(2)Cl(4)(dppb)(2)], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl(2)(dppb)(Cl-bipy)], tc-[RuCl(2)(CO)(2)(dppb)] and [RuCl(2Ac4mT)(dPpb)] complexes were determined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and characterization of ruthenium compounds of the type [RuCl(2)(NO)(dppp)(L)]PF(6) [dppp = 1,3-bis(diphenylphosphino)propane; L = pyridine, 4-methylpyridine, 4-phenylpyridine and dimethyl sulfoxide] are described. The complexes were characterized by elemental analysis, UV/Vis and infrared spectroscopy, cyclic voltammetry, and X-ray crystallography for the complexes with the pyridine and 4-methylpyridine ligands. In vitro evaluation of these nitrosyl complexes revealed cytotoxic activity from 7.1 to 19.0 mu M against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The 1,3-bis(diphenylphosphino)propane and the N-heterocyclic ligands alone failed to show cytotoxic activities at the concentrations tested (maximum concentration utilized = 200 mu M). (C) 2009 Elsevier Inc. All rights reserved.