990 resultados para Biology, Cell|Biology, Animal Physiology|Chemistry, Biochemistry|Health Sciences, Oncology
Resumo:
Defensins are mediators of mammalian innate immunity, and knowledge of their structure-function relationships is essential for understanding their mechanisms of action. We report here the NMR solution structures of the mouse Paneth cell α-defensin cryptdin-4 (Crp4) and a mutant (E15D)-Crp4 peptide, in which a conserved Glu15 residue was replaced by Asp. Structural analysis of the two peptides confirms the involvement of this Glu in a conserved salt bridge that is removed in the mutant because of the shortened side chain. Despite disruption of this structural feature, the peptide variant retains a well defined native fold because of a rearrangement of side chains, which result in compensating favorable interactions. Furthermore, salt bridge-deficient Crp4 mutants were tested for bactericidal effects and resistance to proteolytic degradation, and all of the variants had similar bactericidal activities and stability to proteolysis. These findings support the conclusion that the function of the conserved salt bridge in Crp4 is not linked to bactericidal activity or proteolytic stability of the mature peptide.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.
Resumo:
Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. ^ It was initially found that comparing to wild type cells, gsk3 - cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. ^ I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.^
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phi(f), and singlet oxygen quantum yield Phi(Delta)), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phi(f) <= 0.02; Phi(Delta) similar to 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.
Resumo:
This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H(2)O(2)) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H(2)O(2) was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H(2)O(2). It was observed that ROS production was almost inhibited by the presence of H(2)O(2) when cells were not present. In addition, experiments using different sequence combinations of MB and H(2)O(2) were performed and MB optical properties inside the cell were analyzed. Spectroscopy experiments suggested that the amount of MB was higher inside the cells when H(2)O(2) was used before or simultaneously with PDI, and ROS formation inside C. albicans cells confirmed that ROS production is higher in the presence of H(2)O(2). Moreover enzymatic reduction of MB by E. coli during photosensitizer uptake to the photochemically inactive leucoMB could be reversed by the oxidative effects of hydrogen peroxide, increasing ROS formation inside the microorganism. Therefore, the combination of a photosensitizer such as MB and H(2)O(2) is an interesting approach to improve PDI efficiency.
Resumo:
The understanding of complex physiological processes requires information from many different areas of knowledge. To meet this interdisciplinary scenario, the ability of integrating and articulating information is demanded. The difficulty of such approach arises because, more often than not, information is fragmented through under graduation education in Health Sciences. Shifting from a fragmentary and deep view of many topics to joining them horizontally in a global view is not a trivial task for teachers to implement. To attain that objective we proposed a course herein described Biochemistry of the envenomation response aimed at integrating previous contents of Health Sciences courses, following international recommendations of interdisciplinary model. The contents were organized by modules with increasing topic complexity. The full understanding of the envenoming pathophysiology of each module would be attained by the integration of knowledge from different disciplines. Active-learning strategy was employed focusing concept map drawing. Evaluation was obtained by a 30-item Likert-type survey answered by ninety students; 84% of the students considered that the number of relations that they were able to establish as seen by concept maps increased throughout the course. Similarly, 98% considered that both the theme and the strategy adopted in the course contributed to develop an interdisciplinary view.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Resumo:
The modified fatty acids, (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]propionic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid, N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine and N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid, all react with soybean 15-lipoxygenase. The products were treated with triphenylphosphine to give alcohols, which were isolated using HPLC. Analysis of the alcohols using negative ion tandem electrospray mass spectrometry, and by comparison with compounds obtained by autoxidation of arachidonic acid, shows that each enzyme catalysed oxidation occurs at the omega -6 position of the substrate. In a similar fashion, it has been found that (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid and N-[(all-Z)-(eicosa-5,8, 11.14-tetraenylthio)]propionic acid each undergoes regioselective oxidation at the carboxyl end of the polyene moiety on treatment with potato 5-lipoxygenase. Neither (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid nor N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid reacts in the presence of this enzyme, while N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine affords the C11' oxidation product. The alcohol derived from (Z,Z,Z)-(octadeca-6,9, 12-trienyloxy)acetic acid using the 15-lipoxygenase reacts at the C6' position with the 5-lipoxygenase. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.
Resumo:
The effect of a range of metal ions on the ability of Marimastat to inhibit matrix metalloproteinase 9 (MMP-9) was examined in a fluorescence based proteolytic assay. Whilst none of the metals examined significantly affected the inhibitory ability of Marimastat, several metal ions did have a significant effect on MMP-9 activity itself. In the absence of Marimastat, Zn(II) and Fe(II) significantly inhibited MMP-9 activity at metal ion concentrations of 10 and 100 muM, respectively. In both the absence and presence of Marimastat, Cd(II) significantly inhibited MMP-9 at 100 muM. In contrast, 1 mM Co(II) significantly upregulated MMP-9 proteolytic activity. (C) 2003 Elsevier Science Inc. All rights reserved.