941 resultados para Biofertilizer and optimization


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within project Distributed eLearning Center (DeLC) we are developing a system for distance and eLearning, which offers fixed and mobile access to electronic content and services. Mobile access is based on InfoStation architecture, which provides Bluetooth and WiFi connectivity. On InfoStation network we are developing multi-agent middleware that provides context-aware, adaptive and personalized access to the mobile services to the users. For more convenient testing and optimization of the middleware a simulation environment, called CA3 SiEnv, is being created.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of recombinant therapeutic proteins is an active area of research in drug development. These bio-therapeutic drugs target nearly 150 disease states and promise to bring better treatments to patients. However, if new bio-therapeutics are to be made more accessible and affordable, improvements in production performance and optimization of processes are necessary. A major challenge lies in controlling the effect of process conditions on production of intact functional proteins. To achieve this, improved tools are needed for bio-processing. For example, implementation of process modeling and high-throughput technologies can be used to achieve quality by design, leading to improvements in productivity. Commercially, the most sought after targets are secreted proteins due to the ease of handling in downstream procedures. This chapter outlines different approaches for production and optimization of secreted proteins in the host Pichia pastoris. © 2012 Springer Science+business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and nonepileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that (1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and (2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO 3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li 2SiO3 shows the best results, including a stable current and response to the gas. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li2SiO3 shows the best results, including a stable current and response to the gas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The determination and monitoring of metallic contaminants in water is a task that must be continuous, leading to the importance of the development, modification and optimization of analytical methodologies capab le of determining the various metal contaminants in natural environments, because, in many cases, the ava ilable instrumentation does not provide enough sensibility for the determination of trace values . In this study, a method of extraction and pre- concentration using a microemulsion system with in the Winsor II equilibrium was tested and optimized for the determination of Co, Cd, P b, Tl, Cu and Ni through the technique of high- resolution atomic absorption spectrometry using a continuum source (HR-CS AAS). The optimization of the temperature program for the graphite furnace (HR-CS AAS GF) was performed through the pyrolysis and atomization curves for the analytes Cd, Pb, Co and Tl with and without the use of different chemical modifiers. Cu and Ni we re analyzed by flame atomization (HR-CS F AAS) after pre-concentr ation, having the sample introduction system optimized for the realization of discrete sampling. Salinity and pH levels were also analyzed as influencing factors in the efficiency of the extraction. As final numbers, 6 g L -1 of Na (as NaCl) and 1% of HNO 3 (v/v) were defined. For the determination of the optimum extraction point, a centroid-simplex statistical plan was a pplied, having chosen as the optimum points of extraction for all of the analytes, the follo wing proportions: 70% aqueous phase, 10% oil phase and 20% co-surfactant/surfactant (C/S = 4). After extraction, the metals were determined and the merit figures obtained for the proposed method were: LOD 0,09, 0,01, 0,06, 0,05, 0,6 and 1,5 μg L -1 for Pb, Cd, Tl, Co, Cu and Ni, re spectively. Line ar ranges of ,1- 2,0 μg L -1 for Pb, 0,01-2,0 μg L -1 for Cd, 1,0 - 20 μg L -1 for Tl, 0,1-5,0 μg L -1 for Co, 2-200 μg L -1 and for Cu e Ni 5-200 μg L -1 were obtained. The enrichment factors obtained ranged between 6 and 19. Recovery testing with the certified sample show ed recovery values (n = 3, certified values) after extraction of 105 and 101, 100 and 104% for Pb, Cd, Cu and Ni respectively. Samples of sweet waters of lake Jiqui, saline water from Potengi river and water produced from the oil industry (PETROBRAS) were spiked and the recovery (n = 3) for the analytes were between 80 and 112% confirming th at the proposed method can be used in the extraction. The proposed method enabled the sepa ration of metals from complex matrices, and with good pre-concentration factor, consistent with the MPV (allowed limits) compared to CONAMA Resolution No. 357/2005 which regulat es the quality of fresh surface water, brackish and saline water in Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the present thesis was to use the manipulation of oocytes enclosed in preantral follicles (MOEPF) as a tool for the female gametes rescue and optimization, from wild species of Caatinga biome. The thesis was divided into 4 experiments. At first experiment, it was performed the estimative and description of the agouti (Dasyprocta leporina) preantral follicles (PF) histologic and ultrastructural features, in which it was estimated 4419.8 ± 532.26 and 5397.52 ± 574.91 follicles for the right and left ovary, respectively, and the majority (86,63%) belonged to the primordial follicles category (P<0.05). Most of the population consists of morphologically normal follicles (70.78%), presenting a large and central nuclei and uniform cytoplasm. At ultrastructural evaluation it was verified the presence of a great number of round mitochondrias associated to lipid droplets. In the second experiment, it was performed the estimative and description of yellow-toothed cavies (Galea spixii) PF characteristics, also, the evaluation of the effect of solid surface vitrification (SSV) on the in situ PF morphology. The total of 416.0 ± 342.8 PF was estimated for the ovary pair and the presence of a large quantity of primary follicles (P<0.05) was evidenced. Most of the PF was morphologically normal (94.6%), in which the oocyte nuclei presented condensed granules of heterochromatin. Round or elongated shaped mitochondria constituted the most abundant organelles. In regard of the SSV, the protocol using the dimethylsulfoxide (DMSO) 3M possibility the preservation of 69.5% of morphologically normal PF, which was evidenced by the light and transmission electronic microscopy. At third experiment, the evaluation of the SSV procedure on the morphology and viability in situ PF form collared peccaries (Pecari tajacu) was performed. No differences were observed among treatments, in which the use of DMSO, ethylene glycol (EG) and dimethylformamide (DMF) as cryoprotectants, regardless its concentration, promoted the morphology preservation of much than 70% of PF. Concerning the PF viability, the DMSO and EG promoted the best preservation. The fourth experiment aimed to evaluate the effect of α MEM+ or TCM199 associated or not to 50 ng of FSHr on the morphology, activation and growth of collared peccaries PF, in vitro cultured (IVC) during 1 or 7 days and the effect on the extracellular matrix (ECM). After 7 days of IVC only the use of TCM199/FSH maintained the proportion of intact PF, similar to day 1(63.2%), however, no differences were observed among treatments (P>0.05). Also, an improvement of the proportion of intact growing PF was verified (P>0.05). By the Ag-NOR analysis it was observed that only the treatment using TCM199/FSH promoted the maintenance of cell proliferation similar to day 1 (P>0.05). The picrosirius red stain revealed that ECM remained intact in all treatments (P>0.05). Thus, as the general conclusion, the use of MOEPF in the refereed species allowed the knowledge of aspects related to its reproductive morphology and physiology, enabling the germplasm conservation, with the possibility of germplasm bank formation, as the elucidation of mechanisms related to the PF survive and in vitro development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The direct drive point absorber is a robust and efficient system for wave energy harvesting, where the linear generator represents the most complex part of the system. Therefore, its design and optimization are crucial tasks. The tubular shape of a linear generator’s magnetic circuit offers better permanent magnet flux encapsulation and reduction in radial forces on the translator due to its symmetry. A double stator topology can improve the power density of the linear tubular machine. Common designs employ a set of aligned stators on each side of a translator with radially magnetized permanent magnets. Such designs require doubling the amount of permanent magnet material and lead to an increase in the cogging force. The design presented in this thesis utilizes a translator with buried axially magnetized magnets and axially shifted positioning of the two stators such that no additional magnetic material, compared to single side machine, is required. In addition to the conservation of magnetic material, a significant improvement in the cogging force occurs in the two phase topology, while the double sided three phase system produces more power at the cost of a small increase in the cogging force. The analytical and the FEM models of the generator are described and their results compared to the experimental results. In general, the experimental results compare favourably with theoretical predictions. However, the experimentally observed permanent magnet flux leakage in the double sided machine is larger than predicted theoretically, which can be justified by the limitations in the prototype fabrication and resulting deviations from the theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.

At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.

The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.

In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.

To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.

In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.

Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.

In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El rugby es un deporte ampliamente estudiado en el área física y técnico-táctica con una tasa lesional elevada, que presenta una relación entre los datos antropométricos y el rol de juego.
En este deporte, la incidencia lesional varía en función del rol de juego, siendo mayor en la posición de delantero, además estas lesiones se caracterizan por ser, predominantemente musculares, siendo más comunes en el miembro inferior. Por consiguiente, los objetivos del trabajo han sido sintetizar toda la información acerca del deporte y su epidemiología lesional, para poder realizar una intervención tras Fractura-Luxación Maissoneuve -caso único-, en la que se procuró recuperar una lesión atípica.
Los resultados obtenidos mostraron una mejora de las variables medidas, tanto objetivas (recorrido articular, fuerza y perímetro), como subjetivas (escala de Borg) conforme avanzó la intervención, lo que verificó la importancia del seguimiento y cuantificación de la recuperación, para su reajuste y optimización.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El rugby es un deporte ampliamente estudiado en el área física y técnico-táctica con una tasa lesional elevada, que presenta una relación entre los datos antropométricos y el rol de juego.
En este deporte, la incidencia lesional varía en función del rol de juego, siendo mayor en la posición de delantero, además estas lesiones se caracterizan por ser, predominantemente musculares, siendo más comunes en el miembro inferior. Por consiguiente, los objetivos del trabajo han sido sintetizar toda la información acerca del deporte y su epidemiología lesional, para poder realizar una intervención tras Fractura-Luxación Maissoneuve -caso único-, en la que se procuró recuperar una lesión atípica.
Los resultados obtenidos mostraron una mejora de las variables medidas, tanto objetivas (recorrido articular, fuerza y perímetro), como subjetivas (escala de Borg) conforme avanzó la intervención, lo que verificó la importancia del seguimiento y cuantificación de la recuperación, para su reajuste y optimización.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Navigation devices used to be bulky and expensive and were not widely commercialized for personal use. Nowadays, all useful electronic devices are turning into being handheld so that they can be conveniently used anytime and anywhere. One can claim that almost any mobile phone, used today, has quite strong navigational capabilities that can efficiently work anywhere in the globe. No matter where you are, you can easily know your exact location and make your way smoothly to wherever you would like to go. This couldn’t have been made possible without the existence of efficient and small microwave circuits responsible for the transmission and reception of high quality navigation signals. This thesis is mainly concerned with the design of novel highly miniaturized and efficient filtering components working in the Global Navigational Satellite Systems (GNSS) frequency band to be integrated within an efficient Radio Frequency (RF) front-end module (FEM). A System-on-Package (SoP) integration technique is adopted for the design of all the components in this thesis. Two novel miniaturized filters are designed, where one of them is a wideband filter targeting the complete GNSS band with a fractional bandwidth of almost 50% at a center frequency of 1.385 GHz. This filter utilizes a direct inductive coupling topology to achieve the required wide band performance. It also has very good out-of-band rejection and low IL. Whereas the other dual band filter will only cover the lower and upper GNSS bands with a rejection notch in between the two bands. It has very good inter band rejection. The well-known “divide and conquer” design methodology was applied for the design of this filter to help save valuable design and optimization time. Moreover, the performance of two commercially available ultra-Low Noise Amplifiers (LNAs) is studied. The complete RF FEM showed promising preliminary performance in terms of noise figure, gain and bandwidth, where it out performed other commercial front-ends in these three aspects. All the designed circuits are fabricated and tested. The measured results are found to be in good agreements with the simulations.