957 resultados para Beyond Standard Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector-boson interactions through the production of vector-boson pairs accompanied by jets. In the framework of SU(2) L⊗U(1) Y chiral Lagrangians, we examine all effective operators of order p 4 that lead to new four-gauge-boson interactions but do not alter trilinear vertices. In our analyses, we perform the full tree-level calculation of the processes leading to two jets plus vector-boson pairs, W +W -,W ±W ±,W ±Z, or ZZ, taking properly into account the interference between the standard model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible new couplings. ©1998 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the potentiality of both CERN LEP and Fermilab Tevatron colliders to establish bounds on new couplings involving the bosonic sector of the standard model. We pay particular attention to the anomalous Higgs interactions with γ, W±, and Z0. A combined exclusion plot for the coefficients of different anomalous operators is presented. The sensitivity that can be achieved at the Next Linear Collider and at the upgraded Tevatron is briefly discussed. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a 1/r3 behavior of the potential for the exchange of very light pseudoscalars and a 1/r7 dependence if the pseudoscalars are true massless Goldstone bosons. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flavor changing (FC) neutrino-matter interactions can account for the zenith-angle-dependent deficit of atmospheric neutrinos observed in the SuperKamiokande experiment, without directly invoking either neutrino mass or mixing. We find that FC ν μ-matter interactions provide a good fit to the observed zenith angle distributions, comparable in quality to the neutrino oscillation hypothesis. The required FC interactions arise naturally in many attractive extensions of the standard model. © 1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the Higgs resonance can be amplified in a 3-3-1 model with a multi-Higgs-boson leptophilic scalar sector. This would allow the observation of the Higgs particle in muon colliders even for Higgs boson masses considerably higher than the ones expected to be seen in the electroweak standard model framework. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan β, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we study the structure of electromagnetic interactions and electric charge quantization in gauge theories of electroweak interactions based on semisimple groups. We show that in the standard model of electroweak interactions the structure of electromagnetic interactions is strongly correlated to the quantization pattern of electric charges. We examine these two questions also in all possible chiral bilepton gauge models of electroweak interactions. In all, we can explain the vectorlike nature of electromagnetic interactions and electric charge quantization together demanding nonvanishing fermion masses and anomaly cancellations. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Final-state qq̄ interactions give origin to nonzero values of the off-diagonal element ρ1,-1 of the helicity density matrix of vector mesons produced in e+e- annihilations, as has been confirmed by recent OPAL data on φ, D*, and K*. New predictions are given for ρ1,-1 of several mesons produced at large XE and small pT - i.e., collinear with the parent jet - in the annihilation of polarized e+ and e-; the results depend strongly on the elementary dynamics and allow further nontrivial tests of the standard model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z → bb width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R(b) agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Δg(Z)/1 and g(Z)/5 are most stringent than the present direct bounds on these quantities, while the indirect limit on λ(Z) is weaker than the available experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the minimal supersymmetric standard model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re-emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the neutral Higgs boson production via the gluon fusion process with the τ+τ- final state at the upgraded Fermilab Tevatron, including a complete simulation of signal channels and leading background processes. For the SM Higgs boson, this h → τ +τ- channel may provide important addition for the Higgs boson discovery in the mass range 120 -140 GeV. In minimal supersymmetric models, natural enhancement for the signal rate over the SM expectation makes the h, H, A → τ+τ- signal observable for large tan β and low MA, which may lead to full coverage for SUSY Higgs parameters at the Tevatron with a moderate integrated luminosity. © SISSA/ISAS 2003.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a measurement of the top quark pair (tt̄) production cross section in pp̄ collisions at √s=1.96 TeV using events with two charged leptons in the final state. This analysis utilizes an integrated luminosity of 224-243 pb-1 collected with the DØ detector at the Fermilab Tevatron Collider. We observe 13 events in the e+e -, eμ and μ+μ- channels with an expected background of 3.2±0.7 events. For a top quark mass of 175 GeV, we measure a tt̄ production cross section of σtt̄=8. 6-2.7 +3.2(stat)±1.1(syst)±0.6(lumi) pb, consistent with the standard model prediction. © 2005 Elsevier B.V. All rights reserved.