948 resultados para Bcl-2 Expression
Resumo:
Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.
Resumo:
Nuclear receptors are ligand-activated transcription factors, which have the potential to integrate internal metabolic events in an organism, with consequences for control of behaviour. Previous studies from this laboratory have shown that thyroid hormone receptor (TR) isoforms can inhibit oestrogen receptor (ER)alpha-mediated induction of preproenkephalin (PPE) gene expression in the hypothalamus. Also, thyroid hormone administration inhibits lordosis, a behaviour facilitated by PPE expression. We have examined the effect of multiple ligand-binding TR isoforms on the ER-mediated induction of the PPE gene in transient transfection assays in CV-1 cells. On a natural PPE gene promoter fragment containing two putative oestrogen response elements (EREs), both ER alpha and beta isoforms mediate a four to five-fold induction by oestrogen. Cotransfection of TR alpha 1 along with ER alpha inhibited the ER alpha transactivation of PPE by approximately 50%. However, cotransfection with either TR beta 1 or TR beta 2 expression plasmids produced no effect on the ER alpha or ER beta mediated induction of PPE. Therefore, under these experimental conditions, interactions with a single ER isoform are specific to an individual TR isoform. Transfection with a TR alpha 1 DNA-binding mutant could also inhibit ER alpha transactivation, suggesting that competition for binding on the ERE may not be the exclusive mechanism for inhibition. Data with the coactivator, SRC-1, suggested that coactivator squelching may participate in the inhibition. In dramatic contrast, when ER beta is cotransfected, TR alpha 1 stimulated ER beta-mediated transactivation of PPE by approximately eight-fold over control levels. This is the first study revealing specific interactions among nuclear receptor isoforms on a neuroendocrine promoter. These data also suggest that the combinatorics of ER and TR isoforms allow multiple forms of flexible gene regulations in the service of neuroendocrine integration.
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type 11 cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
P>Apoptosis of macrophages infected with pathogenic mycobacteria is an alternative host defence capable of removing the environment supporting bacterial growth. In this work the influence of virulence and bacterial load on apoptosis of alveolar macrophages during the initial phase of infection by Mycobacterium bovis was investigated. BALB/c mice were infected intratracheally with high or low doses of the virulent (ATCC19274) or attenuated (bacillus Calmette-Guerin Moreau) strains of M. bovis. The frequency of macrophage apoptosis, the growth of mycobacteria in macrophages, and the in situ levels of the cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10) and IL-12 and of the anti-apoptotic protein Bcl-2 were measured at day 3 and day 7 post-infection. An increase of macrophage apoptosis was observed after infection with both strains but the virulent strain induced less apoptosis than the attenuated strain. On the 3rd day after infection with the virulent strain macrophage apoptosis was reduced in the high-dose group, while on the 7th day post-infection macrophage apoptosis was reduced in the low-dose group. Inhibition of apoptosis was correlated with increased production of IL-10, reduced production of TNF-alpha and increased production of Bcl-2. In addition, the production of IL-12 was reduced at points where the lowest levels of macrophage apoptosis were observed. Our results indicate that virulent mycobacteria are able to modulate macrophage apoptosis to an extent dependent on the intracellular bacterial burden, which benefits its intracellular growth and dissemination to adjacent cells.
Resumo:
The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)
Resumo:
Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic beta-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic beta-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor a leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-gamma coactivator Delta a and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1 alpha expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the changes caused by chronic diabetes in the rat ventral prostate and to establish a correlation between diabetes and the development of prostatic lesions. Male rats received alloxan (42 mg/kg b.w.) to induce diabetes. Ninety days after diabetes diagnosis, animals were sacrificed and the ventral prostate was removed and prepared for general and immunohistochemical analyses. The total area showing different types of lesions was estimated. Diabetes led to a decrease in the body and prostatic weights, as well as in testosterone levels. The prostate morphology and stereology showed high variation in the diabetic group. Some animals had light changes; the great majority had an intense epithelial atrophy; and other rats showed premalignant and malignant lesions in the prostate. Such epithelial atrophy was, in some samples, combined with chronic inflammation, similar to proliferative inflammatory atrophy (PIA). The diabetic group also presented high incidence of prostatitis, adenocarcinoma and prostatic intra-epithelial neoplasia (PIN). Samples with adenocarcinoma had poorly differentiated acini with high levels of cellular proliferation and nuclear atypia. These lesions exhibited an invasive feature showing Bcl-2-positive cells and interruptions in the basement membrane. An association of PIA, PIN and adenocarcinoma was detected in one sample. Reduced androgen levels have a synergic effect to insulin dysfunction promoting negative effects in the rat prostate. Diabetic individuals had a high incidence of prostatitis, and this inflammation could stimulate the incidence of other forms of prostatic pathology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Queilite actínica é a principal lesão pré-neoplásica do lábio. O carcinoma espinocelular do lábio é incluído nas estatísticas brasileiras junto com os cânceres de boca e, em conjunto, somam 40% dos cânceres de cabeça e pescoço. Há certo desconhecimento médico e odontológico em geral quanto aos fatores relacionados à carcinogênese e à progressão de tumores de boca. Genes de supressão tumoral e proteínas regulatórias de proliferação celular exercem papel na evolução da queilite actínica para carcinoma espinocelular e no comportamento biológico deste. O conhecimento de marcadores de diagnóstico e prognóstico e sua investigação têm utilidade no acompanhamento de tais pacientes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)