921 resultados para Bayesian nonparametric
Resumo:
Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.
Resumo:
Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.
Resumo:
In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.
Resumo:
We present results that compare the performance of neural networks trained with two Bayesian methods, (i) the Evidence Framework of MacKay (1992) and (ii) a Markov Chain Monte Carlo method due to Neal (1996) on a task of classifying segmented outdoor images. We also investigate the use of the Automatic Relevance Determination method for input feature selection.
Resumo:
We consider the problem of assigning an input vector bfx to one of m classes by predicting P(c|bfx) for c = 1, ldots, m. For a two-class problem, the probability of class 1 given bfx is estimated by s(y(bfx)), where s(y) = 1/(1 + e-y). A Gaussian process prior is placed on y(bfx), and is combined with the training data to obtain predictions for new bfx points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior; the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multi-class problems (m >2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task.
Resumo:
In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.
Resumo:
A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.
Resumo:
Efficient new Bayesian inference technique is employed for studying critical properties of the Ising linear perceptron and for signal detection in code division multiple access (CDMA). The approach is based on a recently introduced message passing technique for densely connected systems. Here we study both critical and non-critical regimes. Results obtained in the non-critical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also studied. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.
Resumo:
In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.
Resumo:
Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.