928 resultados para Bayesian nonparametric
Resumo:
R. Daly and Q. Shen. A Framework for the Scoring of Operators on the Search Space of Equivalence Classes of Bayesian Network Structures. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 67-74.
Resumo:
J. Keppens, Q. Shen and M. Lee. Compositional Bayesian modelling and its application to decision support in crime investigation. Proceedings of the 19th International Workshop on Qualitative Reasoning, pages 138-148.
Resumo:
J. Keppens and Q. Shen. Causality enabled compositional modelling of Bayesian networks. Proceedings of the 18th International Workshop on Qualitative Reasoning, pages 33-40, 2004.
Resumo:
Objectives. This paper explores the use of regression models for estimating health status of schizophrenic patients, from a Bayesian perspective. Our aims are: 1- To obtain a set of values of health states of the EQ-5D based on self-assessed health from a sample of schizophrenic patients. 2- To analyse the differences in the health status and in patients’ perceptions of their health status between four mental-health districts in Spain. Methods. We develop two linear models with dummy variables. The first model seeks to obtain an index of the health status of the patients using a VAS as a dependent variable and the different dimensions of EQ-5D as regressors. The second model allows to analyse the differences between the self-assessed health status in the different geographic areas and also the differences between the patients’ self-assessed health states, irrespective of their actual health state, in the different geographic areas. The analysis is done using Bayesian approach with Gibbs sampling (computer program WinBUGS 1.4). Data concerning self-assessed EQ-5D with VAS from four geographic areas of schizophrenic patients were obtained for the purposes of this analysis. Results. We obtained the health status index for this sample and analysed the differences for this index between the four geographic areas. Our study reveals variables that explain the differences in patients’ health status and differences in their health states assessment. We consider four possible scenarios.
Resumo:
(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.
Resumo:
One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.
Resumo:
An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is introduced. In slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjusted gradually.
Resumo:
Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.
Resumo:
We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Resumo:
We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Resumo:
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.