910 resultados para Bayesian maximum entropy
Resumo:
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.
Resumo:
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
We conducted the first molecular phylogenetic study of Ficus section Malvanthera (Moraceae; subgenus Urostigma) based on 32 Malvanthera accessions and seven outgroups representing other sections of Ficus subgenus Urostigma. We used DNA sequences from the nuclear ribosomal internal and external transcribed spacers (ITS and ETS), and the glyceraldehyde-3-phosphate dehydrogenase (G3pdh) region. Phylogenetic analysis using maximum parsimony, maximum likelihood and Bayesian methods recovered a monophyletic section Malvanthera to the exclusion of the rubber fig, Ficus elastica. The results of the phylogenetic analyses do not conform to any previously proposed taxonomic subdivision of the section and characters used for previous classification are homoplasious. Geographic distribution, however, is highly conserved and Melanesian Malvanthera are monophyletic. A new subdivision of section Malvanthera reflecting phylogenetic relationships is presented. Section Malvanthera likely diversified during a period of isolation in Australia and subsequently colonized New Guinea. Two Australian series are consistent with a pattern of dispersal out of rainforest habitat into drier habitats accompanied by a reduction in plant height during the transition from hemi-epiphytic trees to lithophytic trees and shrubs. In contradiction with a previous study of Pleistodontes phylogeny suggesting multiple changes in pollination behaviour, reconstruction of changes in pollination behaviour on Malvanthera, suggests only one or a few gains of active pollination within the section. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The estimation of effective population size from one sample of genotypes has been problematic because most estimators have been proven imprecise or biased. We developed a web-based program, ONeSAMP that uses approximate Bayesian computation to estimate effective population size from a sample of microsatellite genotypes. ONeSAMP requires an input file of sampled individuals' microsatellite genotypes along with information about several sampling and biological parameters. ONeSAMP provides an estimate of effective population size, along with 95% credible limits. We illustrate the use of ONeSAMP with an example data set from a re-introduced population of ibex Capra ibex.
Resumo:
This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.
Resumo:
The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.
Resumo:
In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bayesian decision procedures have already been proposed for and implemented in Phase I dose-escalation studies in healthy volunteers. The procedures have been based on pharmacokinetic responses reflecting the concentration of the drug in blood plasma and are conducted to learn about the dose-response relationship while avoiding excessive concentrations. However, in many dose-escalation studies, pharmacodynamic endpoints such as heart rate or blood pressure are observed, and it is these that should be used to control dose-escalation. These endpoints introduce additional complexity into the modeling of the problem relative to pharmacokinetic responses. Firstly, there are responses available following placebo administrations. Secondly, the pharmacodynamic responses are related directly to measurable plasma concentrations, which in turn are related to dose. Motivated by experience of data from a real study conducted in a conventional manner, this paper presents and evaluates a Bayesian procedure devised for the simultaneous monitoring of pharmacodynamic and pharmacokinetic responses. Account is also taken of the incidence of adverse events. Following logarithmic transformations, a linear model is used to relate dose to the pharmacokinetic endpoint and a quadratic model to relate the latter to the pharmacodynamic endpoint. A logistic model is used to relate the pharmacokinetic endpoint to the risk of an adverse event.
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]