999 resultados para Bangalore


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor.The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio,LEDs, and external flash memory. Using the manufacturer’s data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional hardware implementation techniques for FIR filters require the computation of filter coefficients in software and have them stored in memory. This approach is static in the sense that any further fine tuning of the filter requires computation of new coefficients in software. In this paper, we propose an alternate technique for implementing FIR filters in hardware. We store a considerably large number of impulse response coefficients of the ideal filter (having box type frequency response) in memory. We then do the windowing process, on these coefficients, in hardware using integer sequences as window functions. The integer sequences are also generated in hardware. This approach offers the flexibility in fine tuning the filter, like varying the transition bandwidth around a particular cutoff frequency.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.