954 resultados para BORSUK-ULAM THEOREM
Resumo:
According to the List Colouring Conjecture, if G is a multigraph then χ' (G)=χl' (G) . In this thesis, we discuss a relaxed version of this conjecture that every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem ∆(G) ≤χ' (G)≤∆(G) + 1. We prove that if G is a planar graph without 7-cycles with ∆(G)≠5,6 , or without adjacent 4-cycles with ∆(G)≠5, or with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable.
Resumo:
Heyting categories, a variant of Dedekind categories, and Arrow categories provide a convenient framework for expressing and reasoning about fuzzy relations and programs based on those methods. In this thesis we present an implementation of Heyting and arrow categories suitable for reasoning and program execution using Coq, an interactive theorem prover based on Higher-Order Logic (HOL) with dependent types. This implementation can be used to specify and develop correct software based on L-fuzzy relations such as fuzzy controllers. We give an overview of lattices, L-fuzzy relations, category theory and dependent type theory before describing our implementation. In addition, we provide examples of program executions based on our framework.
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Resumo:
Consider an undirected graph G and a subgraph of G, H. A q-backbone k-colouring of (G,H) is a mapping f: V(G) {1, 2, ..., k} such that G is properly coloured and for each edge of H, the colours of its endpoints differ by at least q. The minimum number k for which there is a backbone k-colouring of (G,H) is the backbone chromatic number, BBCq(G,H). It has been proved that backbone k-colouring of (G,T) is at most 4 if G is a connected C4-free planar graph or non-bipartite C5-free planar graph or Cj-free, j∈{6,7,8} planar graph without adjacent triangles. In this thesis we improve the results mentioned above and prove that 2-backbone k-colouring of any connected planar graphs without adjacent triangles is at most 4 by using a discharging method. In the second part of this thesis we further improve these results by proving that for any graph G with χ(G) ≥ 4, BBC(G,T) = χ(G). In fact, we prove the stronger result that a backbone tree T in G exists, such that ∀ uv ∈ T, |f(u)-f(v)|=2 or |f(u)-f(v)| ≥ k-2, k = χ(G). For the case that G is a planar graph, according to Four Colour Theorem, χ(G) = 4; so, BBC(G,T) = 4.
Resumo:
Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.
Resumo:
A desirable property of a voting procedure is that it be immune to the strategic withdrawal of a candidate for election. Dutta, Jackson, and Le Breton (Econometrica, 2001) have established a number of theorems that demonstrate that this condition is incompatible with some other desirable properties of voting procedures. This article shows that Grether and Plott's nonbinary generalization of Arrow's Theorem can be used to provide simple proofs of two of these impossibility theorems.
Resumo:
This note investigates the adequacy of the finite-sample approximation provided by the Functional Central Limit Theorem (FCLT) when the errors are allowed to be dependent. We compare the distribution of the scaled partial sums of some data with the distribution of the Wiener process to which it converges. Our setup is purposely very simple in that it considers data generated from an ARMA(1,1) process. Yet, this is sufficient to bring out interesting conclusions about the particular elements which cause the approximations to be inadequate in even quite large sample sizes.
Resumo:
This paper, which is to be published as a chapter in the Oxford Handbook of Political Economy, provides an introduction to social-choice theory with interpersonal comparisons of well-being. We argue that the most promising route of escape from the negative conclusion of Arrow’s theorem is to use a richer informational environment than ordinal measurability and the absence of interpersonal comparability of well-being. We discuss welfarist social evaluation (which requires that the levels of individual well-being in two alternatives are the only determinants of their social ranking) and present characterizations of some important social-evaluation orderings.
Resumo:
This paper revisits Diamond’s classical impossibility result regarding the ordering of infinite utility streams. We show that if no representability condition is imposed, there do exist strongly Paretian and finitely anonymous orderings of intertemporal utility streams with attractive additional properties. We extend a possibility theorem due to Svensson to a characterization theorem and we provide characterizations of all strongly Paretian and finitely anonymous rankings satisfying the strict transfer principle. In addition, infinite horizon extensions of leximin and of utilitarianism are characterized by adding an equity preference axiom and finite translation-scale measurability, respectively, to strong Pareto and finite anonymity.
Resumo:
In the past quarter century, there has been a dramatic shift of focus in social choice theory, with structured sets of alternatives and restricted domains of the sort encountered in economic problems coming to the fore. This article provides an overview of some of the recent contributions to four topics in normative social choice theory in which economic modelling has played a prominent role: Arrovian social choice theory on economic domains, variable-population social choice, strategy-proof social choice, and axiomatic models of resource allocation.
Resumo:
Consistency, a natural weakening of transitivity introduced in a seminal contribution by Suzumura (1976b), has turned out to be an interesting and promising concept in a variety of areas within economic theory. This paper summarizes its recent applications and provides some new observations in welfarist social choice and in population ethics. In particular, it is shown that the conclusion of the welfarism theorem remains true if transitivity is replaced by consistency and that an impossibility result in variable-population social-choice theory turns into a possibility if transitivity is weakened to consistency.
Flippable Pairs and Subset Comparisons in Comparative Probability Orderings and Related Simple Games
Resumo:
We show that every additively representable comparative probability order on n atoms is determined by at least n - 1 binary subset comparisons. We show that there are many orders of this kind, not just the lexicographic order. These results provide answers to two questions of Fishburn et al (2002). We also study the flip relation on the class of all comparative probability orders introduced by Maclagan. We generalise an important theorem of Fishburn, Peke?c and Reeds, by showing that in any minimal set of comparisons that determine a comparative probability order, all comparisons are flippable. By calculating the characteristics of the flip relation for n = 6 we discover that the regions in the corresponding hyperplane arrangement can have no more than 13 faces and that there are 20 regions with 13 faces. All the neighbours of the 20 comparative probability orders which correspond to those regions are representable. Finally we define a class of simple games with complete desirability relation for which its strong desirability relation is acyclic, and show that the flip relation carries all the information about these games. We show that for n = 6 these games are weighted majority games.
Resumo:
Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.