850 resultados para Attentional Setting
Resumo:
Engastando una piedra preciosa
Resumo:
In this paper, a mathematical programming model and a heuristically derived solution is described to assist with the efficient planning of services for a set of auxiliary bus lines (a bus-bridging system) during disruptions of metro and rapid transit lines. The model can be considered static and takes into account the average flows of passengers over a given period of time (i.e., the peak morning traffic hour) Auxiliary bus services must accommodate very high demand levels, and the model presented is able to take into account the operation of a bus-bridging system under congested conditions. A general analysis of the congestion in public transportation lines is presented, and the results are applied to the design of a bus-bridging system. A nonlinear integer mathematical programming model and a suitable approximation of this model are then formulated. This approximated model can be solved by a heuristic procedure that has been shown to be computationally viable. The output of the model is as follows: (a) the number of bus units to assign to each of the candidate lines of the bus-bridging system; (b) the routes to be followed by users passengers of each of the origin–destination pairs; (c) the operational conditions of the components of the bus-bridging system, including the passenger load of each of the line segments, the degree of saturation of the bus stops relative to their bus input flows, the bus service times at bus stops and the passenger waiting times at bus stops. The model is able to take into account bounds with regard to the maximum number of passengers waiting at bus stops and the space available at bus stops for the queueing of bus units. This paper demonstrates the applicability of the model with two realistic test cases: a railway corridor in Madrid and a metro line in Barcelona Planificación de los servicios de lineas auxiliares de autobuses durante las incidencias de las redes de metro y cercanías. El modelo estudia el problema bajo condiciones de alta demanda y condiciones de congestión. El modelo no lineal resultante es resuelto mediante heurísticas que demuestran su utilidad. Se demuestran los resultados en dos corredores de las ciudades de Barcelona y Madrid.
Resumo:
Acknowledgements The iHARP database was funded by unrestricted grants from Mundipharma International Ltd and Research in Real-Life Ltd; these analyses were funded by an unrestricted grant from Teva Pharmaceuticals. Mundipharma and Teva played no role in study conduct or analysis and did not modify or approve the manuscript. The authors wish to direct a special appreciation to all the participants of the iHARP group who contributed data to this study and to Mundipharma, sponsors of the iHARP group. In addition, we thank Julie von Ziegenweidt for assistance with data extraction and Anna Gilchrist and Valerie L. Ashton, PhD, for editorial assistance. Elizabeth V. Hillyer, DVM, provided editorial and writing support, funded by Research in Real-Life, Ltd.
Resumo:
Two different attentional networks have been associated with visuospatial attention and conflict resolution. In most situations either one of the two networks is active or both are increased in activity together. By using functional magnetic resonance imaging and a flanker task, we show conditions in which one network (anterior attention system) is increased in activity whereas the other (visuospatial attention system) is reduced, showing that attentional conflict and selection are separate aspects of attention. Further, we distinguish between neural systems involved in different forms of conflict. Specifically, we dissociate patterns of activity in the basal ganglia and insula cortex during simple violations in expectancies (i.e., sudden changes in the frequency of an event) from patterns of activity in the anterior attention system specifically correlated with response conflict as evidenced by longer response latencies and more errors. These data provide a systems-level approach in understanding integrated attentional networks.