861 resultados para Ast-8440


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Few data on the virological determinants of hepatitis B virus (HBV) infection are available from southern Africa. METHODS We enrolled consecutive HIV-infected adult patients initiating antiretroviral therapy (ART) at two urban clinics in Zambia and four rural clinics in Northern Mozambique between May 2013 and August 2014. HBsAg screening was performed using the Determine® rapid test. Quantitative real-time PCR and HBV sequencing were performed in HBsAg-positive patients. Risk factors for HBV infection were evaluated using Chi-square and Mann-Whitney tests and associations between baseline characteristics and high level HBV replication explored in multivariable logistic regression. RESULTS Seventy-eight of 1,032 participants in Mozambique (7.6%, 95% confidence interval [CI]: 6.1-9.3) and 90 of 797 in Zambia (11.3%, 95% CI: 9.3-13.4) were HBsAg-positive. HBsAg-positive individuals were less likely to be female compared to HBsAg-negative ones (52.3% vs. 66.1%, p<0.001). Among 156 (92.9%) HBsAg-positive patients with an available measurement, median HBV viral load was 13,645 IU/mL (interquartile range: 192-8,617,488 IU/mL) and 77 (49.4%) had high values (>20,000 UI/mL). HBsAg-positive individuals had higher levels of ALT and AST compared to HBsAg-negative ones (both p<0.001). In multivariable analyses, male sex (adjusted odds ratio: 2.59, 95% CI: 1.22-5.53) and CD4 cell count below 200/μl (2.58, 1.20-5.54) were associated with high HBV DNA. HBV genotypes A1 (58.8%) and E (38.2%) were most prevalent. Four patients had probable resistance to lamivudine and/or entecavir. CONCLUSION One half of HBsAg-positive patients demonstrated high HBV viremia, supporting the early initiation of tenofovir-containing ART in HIV/HBV-coinfected adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (similar to 15 mu m) and vertical (similar to 20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). Key Words: Biogenicity-Biomarkers-Biosignatures-Filaments-Fossilization. Astrobiology 15, 669-682.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 +/- 2 K), and pressure (6 +/- 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6x10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. Key Words: Martian surface-Organic chemistry-Photochemistry-Astrochemistry-Nontronite-Phyllosilicates. Astrobiology 15, 221-237.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vorbesitzer: Dominikanerkloster Frankfurt am Main

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vorbesitzer: Dominikanerkloster Frankfurt am Main

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BioCentury Research Farm (BCRF) had a diversity of users in 2011. Iowa State faculty and staff from agricultural and biosystems engineering (ABE), agricultural systems technology (AST), agronomy, chemical and biological engineering (CBE), civil, construction, and environmental engineering (CCEE), food science and human nutrition (FSHN), horticulture, mechanical engineering (ME), and natural resource ecology and management (NREM) conducted research, teaching, and outreach at the BCRF. Private industry users included Avello Bioenergy, DCE, Frontline BioEnergy, and Virent, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.