871 resultados para Artificial Intelligence|Computer Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Imaging during a period of minimal myocardial motion is of paramount importance for coronary MR angiography (MRA). The objective of our study was to evaluate the utility of FREEZE, a custom-built automated tool for the identification of the period of minimal myocardial motion, in both a moving phantom at 1.5 T and 10 healthy adults (nine men, one woman; mean age, 24.9 years; age range, 21-32 years) at 3 T. CONCLUSION: Quantitative analysis of the moving phantom showed that dimension measurements approached those obtained in the static phantom when using FREEZE. In vitro, vessel sharpness, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were significantly improved when coronary MRA was performed during the software-prescribed period of minimal myocardial motion (p < 0.05). Consistent with these objective findings, image quality assessments by consensus review also improved significantly when using the automated prescription of the period of minimal myocardial motion. The use of FREEZE improves image quality of coronary MRA. Simultaneously, operator dependence can be minimized while the ease of use is improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proyecto final de grado consistente en la explotación de un data warehouse para el análisis de información sobre el tránsito rodado de vehículos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest treball de fi de carrera proposa la construcció i explotació d'un magatzem de dades o data warehouse amb l'objectiu d'analitzar la informació relativa a l'evolució del parc de vehicles a Catalunya.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo consiste en la creación de un almacén de datos y su explotación por medio de un conjunto de informes. El almacén de datos registra información relativa al tránsito de vehículos, número de licencias, conductores, etc., la cual está organizada por municipios y años.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realització d'un sistema de Business Intelligence que analitzi les dades extretes dels tweets de la plataforma Twitter en relació a les hospitalitzacions produïdes a un hospital de Catalunya, per tal de tenir una anàlisi predictiva de l'aparició d'un brot de grip. El treball va més enllà a l'emprar una tecnologia no convencional per la implementació del sistema BI. S'escull la dupla ElasticSearch i Kibana per tal d'aconseguir un sistema robust, distribuït, escalable i, sobretot, totalment personalitzable. Després d'un estudi d'aquestes dos solucions, incloent els plugins de monitoratge i càrrega de dades, s'ha elaborat un data warehouse complet i un quadre de comandament introductori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'objectiu fonamental d'aquest article és mostrar com les técniques desenvolupades en intel'ligéncia artificial (lA) són d'una gran utilitat per tal de millorar el software destinat a I'ambit educatiu. Per a aixó, en primer Iloc, s'hi fa un breu resum de les finalitats i els objectius generals de les investigacions en lA realitzades fins al moment. Posteriorment, es descriuen les diferents aplicacions de la lA en I'educació dirigides als alumnes en tasques formatives i instructives, i als professors en tasques de disseny i planificació de les activitats docents. L'article acaba amb una reflexió sobre les tendéncies futures de la lA aplicada a I'educació.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'objectiu principal d'aquest treball és aplicar tècniques de visió articial per aconseguir localitzar i fer el seguiment de les extremitats dels ratolins dins l'entorn de prova de les investigacions d'optogenètica del grup de recerca del Neuroscience Institute de la Universitat de Princeton, Nova Jersey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest projecte es vol explorar en el mercat per trobar una bona solució open source de business intelligence que permeti als dirigents d'un club de fitness millorar la gestió dels seus centres i respondre's algunes preguntes que s'han començat a fer sobre el funcionament del seu negoci, el qual intueixen que ha patit un retrocés de beneficis i de confiança dels seus socis. La finalitat del treball ha estat crear un data warehouse que s'ajustés a les dades de què disposen, transformar-les mitjançant processos ETL i crear cubs OLAP per explotar-les amb eficàcia des de la plataforma de BI escollida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo final de grado se pretende hacer una valoración objetiva de las herramientas disponibles en el mercado actual para la realización de proyectos de business intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L' ús de tècniques de la intel·ligència artificial per a la detecció, la diagnòsi i control d' errors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing global financial crisis has demonstrated the importance of a systemwide, or macroprudential, approach to safeguarding financial stability. An essential part of macroprudential oversight concerns the tasks of early identification and assessment of risks and vulnerabilities that eventually may lead to a systemic financial crisis. Thriving tools are crucial as they allow early policy actions to decrease or prevent further build-up of risks or to otherwise enhance the shock absorption capacity of the financial system. In the literature, three types of systemic risk can be identified: i ) build-up of widespread imbalances, ii ) exogenous aggregate shocks, and iii ) contagion. Accordingly, the systemic risks are matched by three categories of analytical methods for decision support: i ) early-warning, ii ) macro stress-testing, and iii ) contagion models. Stimulated by the prolonged global financial crisis, today's toolbox of analytical methods includes a wide range of innovative solutions to the two tasks of risk identification and risk assessment. Yet, the literature lacks a focus on the task of risk communication. This thesis discusses macroprudential oversight from the viewpoint of all three tasks: Within analytical tools for risk identification and risk assessment, the focus concerns a tight integration of means for risk communication. Data and dimension reduction methods, and their combinations, hold promise for representing multivariate data structures in easily understandable formats. The overall task of this thesis is to represent high-dimensional data concerning financial entities on lowdimensional displays. The low-dimensional representations have two subtasks: i ) to function as a display for individual data concerning entities and their time series, and ii ) to use the display as a basis to which additional information can be linked. The final nuance of the task is, however, set by the needs of the domain, data and methods. The following ve questions comprise subsequent steps addressed in the process of this thesis: 1. What are the needs for macroprudential oversight? 2. What form do macroprudential data take? 3. Which data and dimension reduction methods hold most promise for the task? 4. How should the methods be extended and enhanced for the task? 5. How should the methods and their extensions be applied to the task? Based upon the Self-Organizing Map (SOM), this thesis not only creates the Self-Organizing Financial Stability Map (SOFSM), but also lays out a general framework for mapping the state of financial stability. This thesis also introduces three extensions to the standard SOM for enhancing the visualization and extraction of information: i ) fuzzifications, ii ) transition probabilities, and iii ) network analysis. Thus, the SOFSM functions as a display for risk identification, on top of which risk assessments can be illustrated. In addition, this thesis puts forward the Self-Organizing Time Map (SOTM) to provide means for visual dynamic clustering, which in the context of macroprudential oversight concerns the identification of cross-sectional changes in risks and vulnerabilities over time. Rather than automated analysis, the aim of visual means for identifying and assessing risks is to support disciplined and structured judgmental analysis based upon policymakers' experience and domain intelligence, as well as external risk communication.