958 resultados para Arenaria, seeds
Resumo:
Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Resumo:
In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q® collection traps. VOC profiles were determined using gas chromatography–mass spectrometry (GC–MS).The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available.The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents.
Resumo:
Cosmological inflation is the dominant paradigm in explaining the origin of structure in the universe. According to the inflationary scenario, there has been a period of nearly exponential expansion in the very early universe, long before the nucleosynthesis. Inflation is commonly considered as a consequence of some scalar field or fields whose energy density starts to dominate the universe. The inflationary expansion converts the quantum fluctuations of the fields into classical perturbations on superhorizon scales and these primordial perturbations are the seeds of the structure in the universe. Moreover, inflation also naturally explains the high degree of homogeneity and spatial flatness of the early universe. The real challenge of the inflationary cosmology lies in trying to establish a connection between the fields driving inflation and theories of particle physics. In this thesis we concentrate on inflationary models at scales well below the Planck scale. The low scale allows us to seek for candidates for the inflationary matter within extensions of the Standard Model but typically also implies fine-tuning problems. We discuss a low scale model where inflation is driven by a flat direction of the Minimally Supersymmetric Standard Model. The relation between the potential along the flat direction and the underlying supergravity model is studied. The low inflationary scale requires an extremely flat potential but we find that in this particular model the associated fine-tuning problems can be solved in a rather natural fashion in a class of supergravity models. For this class of models, the flatness is a consequence of the structure of the supergravity model and is insensitive to the vacuum expectation values of the fields that break supersymmetry. Another low scale model considered in the thesis is the curvaton scenario where the primordial perturbations originate from quantum fluctuations of a curvaton field, which is different from the fields driving inflation. The curvaton gives a negligible contribution to the total energy density during inflation but its perturbations become significant in the post-inflationary epoch. The separation between the fields driving inflation and the fields giving rise to primordial perturbations opens up new possibilities to lower the inflationary scale without introducing fine-tuning problems. The curvaton model typically gives rise to relatively large level of non-gaussian features in the statistics of primordial perturbations. We find that the level of non-gaussian effects is heavily dependent on the form of the curvaton potential. Future observations that provide more accurate information of the non-gaussian statistics can therefore place constraining bounds on the curvaton interactions.
Resumo:
Cat’s claw creeper, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) is a major environmental weed in Australia. Two forms (‘long’ and ‘short’ pod) of the weed occur in Australia. This investigation aimed to evaluate and compare germination behavior and occurrence of polyembryony in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20 °C, 15/25 °C, 20/30 °C, 30/45 °C and 25 °C. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from the short pod form exhibited significantly higher germination rates and higher occurrence of polyembryony than those from the long pod form. Seeds from the long pod form did not germinate at the lowest temperature of 10/20 °C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate. Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed form in Australia, while the long pod form is confined to a few localities. The results have implication in predicting future ranges of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.
Resumo:
The seeds of Lathyrus sativus contain the unusual amino acid homoarginine. The possible breakdown of homoarginine to lysine and urea has been investigated with enzyme extracts prepared from the seedlings of L. sativus. The results indicate that there is no separate homoarginase enzyme but that the arginase present has about 5 per cent activity towards Image -homoarginine as compared to that obtained with Image -arginine. The enzyme does not show an absolute dependence on Mn2+ for activity and maximal activation of the enzyme has been realized with Fe3+. It is concluded that the breakdown of homoarginine through the urea cycle may only represent a minor pathway for the catabolism of this compound in this plant.
Resumo:
Inflation is a period of accelerated expansion in the very early universe, which has the appealing aspect that it can create primordial perturbations via quantum fluctuations. These primordial perturbations have been observed in the cosmic microwave background, and these perturbations also function as the seeds of all large-scale structure in the universe. Curvaton models are simple modifications of the standard inflationary paradigm, where inflation is driven by the energy density of the inflaton, but another field, the curvaton, is responsible for producing the primordial perturbations. The curvaton decays after inflation as ended, where the isocurvature perturbations of the curvaton are converted into adiabatic perturbations. Since the curvaton must decay, it must have some interactions. Additionally realistic curvaton models typically have some self-interactions. In this work we consider self-interacting curvaton models, where the self-interaction is a monomial in the potential, suppressed by the Planck scale, and thus the self-interaction is very weak. Nevertheless, since the self-interaction makes the equations of motion non-linear, it can modify the behaviour of the model very drastically. The most intriguing aspect of this behaviour is that the final properties of the perturbations become highly dependent on the initial values. Departures of Gaussian distribution are important observables of the primordial perturbations. Due to the non-linearity of the self-interacting curvaton model and its sensitivity to initial conditions, it can produce significant non-Gaussianity of the primordial perturbations. In this work we investigate the non-Gaussianity produced by the self-interacting curvaton, and demonstrate that the non-Gaussianity parameters do not obey the analytically derived approximate relations often cited in the literature. Furthermore we also consider a self-interacting curvaton with a mass in the TeV-scale. Motivated by realistic particle physics models such as the Minimally Supersymmetric Standard Model, we demonstrate that a curvaton model within the mass range can be responsible for the observed perturbations if it can decay late enough.
Resumo:
Bacteria isolated from the rhizosphere of mulberry (Morus indica) as well as from control soil were tested for their effects on the growth of mulberry seedlings and for phytohormone production. About 12.8 per cent of the rhizosphere and 9.7 per cent of the soil isolates produced phytohormones in cultures. Rhizosphere isolates were more active in hormone synthesis than their soil counterparts. Soaking mulberry stem cuttings in culture filtrates of phytohormone synthesisers hastened their rooting. Culture filtrates of many isolates — hormone producers or not — stimulated or inhibited the growth of shoot and/or root of plants. Many cultures could also inhibit the germination of mulberry seeds.
Resumo:
The biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (ODAP), HOOC· CO·NH·CH2·CH(NH2·COOH is of interest, since this neurotoxin has been isolated from the seeds of Lathyrus sativus, the consumption of which causes the disease neurolathyrism in humans. The concentration of this non-protein amino acid in the seeds increases on germination. When the seeds are germinated in the presence of [14C2]- oxalic acid, the isolated ODAP is labelled exclusively in the oxalyl moiety. An oxalyl- CoA synthetase requiring the obligatory presence of ATP, CoA and Mg2+ can be demonstrated in crude extracts of the seedlings. When l-α,β-diaminopropionic acid is incubated with the enzyme in the presence of the components for oxalyl activation, net formation of ODAP can be shown. The enzymic reaction is specific to the β-amino group of l-α,β-diaminopropionic acidm and the higher homologues like α,γ-diaminobutyric acid, ornithine and lysine are inactive in this system. ODAP is not formed with α,β-diaminopropionic acid when the enzyme extract is prepared from Pisum sativum although oxalyl-CoA formation can be demonstrated.
Resumo:
Abstract—β-N-Oxalyl-l-α,β-diaminopropionic acid (ODAP), the toxin isolated from the seeds of Luthyrus sativus produces head retraction, tremors and convulsions when injected into a variety of experimental animals. In 12-day-old rats, it has been found that the convulsive behaviour is accompanied by profound biochemical changes in the brain. The brain homogenates prepared from ODAP injected animals show a higher rate of respiration. There is a decrease in the brain glucose, glycogen, ATP, phosphocreatine and acetylcholine levels of the convulsing animals. The inorganic phosphate, lactic acid and acetylcholineesterase levels increase. These results establish that ODAP is a typical convulsant.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
A comparatively simple and rapid method for the identification, estimation and preparation of fatty acids has been developed, using reversed phase circular paper chromatography. The method is also suitable for the analysis of “Critical Pairs” of fatty acids and for the preparation of fatty acids. Further, when used at a higher temperature, the method is more sensitive in revealing the presence of even traces of higher fatty acids in the seeds of Adenanthera pavonina.
Resumo:
Infiltration experiments with the intact seeds of Bengal gram (Cicer arietinum) indicated that indole and serine are the immediate precursors of tryptophan in this legume. The enzyme, tryptophan synthetase, has been demonstrated in cell-free extracts of the resting seeds. The optimum pH of the reaction was 5.5, and the Km value for indole at a constant serine concentration of 10−4M was 0.57 × 10−4M. There was a specific requirement for pyridoxal phosphate. Heavy-metal ions were inhibitory.
Resumo:
Direct injection of genomic DNA from salt tolerant cv. Pokkali into developing floral tillers on IR20 produced transgenic seeds similar to Pokkali in husk colour and which germinated well in 0.2 M NaCl and had a 4-6-fold higher proline content.
Resumo:
The galactose-specific lectin from the seeds of Dolichos lablab has been crystallized using the hanging-drop vapour-diffusion technique. The crystals belong to space group P1, with unit-cell parameters a = 73.99, b = 84.13, c = 93.15 angstrom, alpha = 89.92, beta = 76.01, gamma = 76.99 degrees. X-ray diffraction data to a resolution of 3.0 angstrom have been collected under cryoconditions ( 100 K) using a MAR imaging-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the available structures of legume lectins as search models revealed that the galactose-specific lectin from D. lablab forms a tetramer similar to soybean agglutinin; two such tetramers are present in the asymmetric unit.