887 resultados para Amorphous selenium
Resumo:
We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.
Resumo:
Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.
Resumo:
We present a comprehensive study of the low-temperature magnetic relaxation in random magnets. The first part of the paper contains theoretical analysis of the expected features of the relaxation, based upon current theories of quantum tunneling of magnetization. Models of tunneling, dissipation, the crossover from the thermal to the quantum regime, and the effect of barrier distribution on the relaxation rate are discussed. It is argued that relaxation-type experiments are ideally suited for the observation of magnetic tunneling, since they automatically provide the condition of very low barriers. The second part of the paper contains experimental results on transition-metal¿rare-earth amorphous magnets. Structural and magnetic characterization of materials is presented. The temperature and field dependence of the magnetic relaxation is studied. Our key observation is a nonthermal character of the relaxation below a few kelvin. The observed features are in agreement with theoretical suggestions on quantum tunneling of magnetization.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
OBJECTIVE: Enteral glutamine supplementation and antioxidants have been shown to be beneficial in some categories of critically ill patients. This study investigated the impact on organ function and clinical outcome of an enteral solution enriched with glutamine and antioxidant micronutrients in patients with trauma and with burns. METHODS: This was a prospective study of a historical control group including critically ill, burned and major trauma patients (n = 86, 40 patients with burns and 46 with trauma, 43 in each group) on admission to an intensive care unit in a university hospital (matching for severity, age, and sex). The intervention aimed to deliver a 500-mL enteral solution containing 30 g of glutamine per day, selenium, zinc, and vitamin E (Gln-AOX) for a maximum of 10 d, in addition to control treatment consisting of enteral nutrition in all patients and intravenous trace elements in all burn patients. RESULTS: Patients were comparable at baseline, except for more inhalation injuries in the burn-Gln-AOX group (P = 0.10) and greater neurologic impairment in the trauma-Gln-AOX group (P = 0.022). Intestinal tolerance was good. The full 500-mL dose was rarely delivered, resulting in a low mean glutamine daily dose (22 g for burn patients and 16 g for trauma patients). In burn patients intravenous trace element delivery was superior to the enteral dose. The evolution of the Sequential Organ Failure Assessment score and other outcome variables did not differ significantly between groups. C-reactive protein decreased faster in the Gln-AOX group. CONCLUSION: The Gln-AOX supplement was well tolerated in critically ill, injured patients, but did not improve outcome significantly. The delivery of glutamine below the 0.5-g/kg recommended dose in association with high intravenous trace element substitution doses in burn patients are likely to have blunted the impact by not reaching an efficient treatment dose. Further trials testing higher doses of Gln are required.
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
Infections remain the leading cause of death after major burns. Trace elements are involved in immunity and burn patients suffer acute trace element depletion after injury. In a previous nonrandomized study, trace element supplementation was associated with increased leukocyte counts and shortened hospital stays. This randomized, placebo-controlled trial studied clinical and immune effects of trace element supplements. Twenty patients, aged 40 +/- 16 y (mean +/- SD), burned on 48 +/- 17% of their body surfaces, were studied for 30 d after injury. They consumed either standard trace element intakes plus supplements (40.4 micromol Cu, 2.9 micromol Se, and 406 micromol Zn; group TE) or standard trace element intakes plus placebo (20 micromol Cu, 0.4 micromol Se, and 100 micromol Zn; group C) for 8 d. Demographic data were similar for both groups. Mean plasma copper and zinc concentrations were below normal until days 20 and 15, respectively (NS). Plasma selenium remained normal for group TE but decreased for group C (P < 0.05 on days 1 and 5). Total leukocyte counts tended to be higher in group TE because of higher neutrophil counts. Proliferation to mitogens was depressed compared with healthy control subjects (NS). The number of infections per patient was significantly (P < 0.05) lower in group TE (1.9 +/- 0.9) than in group C (3.1 +/- 1.1) because of fewer pulmonary infections. Early trace element supplementation appears beneficial after major burns; it was associated with a significant decrease in the number of bronchopneumonia infections and with a shorter hospital stay when data were normalized for burn size.
Resumo:
The influence of incorporating 5-tert-butyl isophthalic units (tBI) in the polymer chain of poly(ethylene terephthalate) (PET) on the crystallization behavior, crystal structure, and tensile and gas transport properties of this polyester was evaluated. Random poly(ethyleneterephthalate-co-5-tert-butyl isophthalate) copolyesters (PETtBI) containing between 5 and 40 mol% of tBI units were examined. Isothermal crystallization studies were performed on amorphous glassy films at 120 8C and on molten samples at 200 8C by means of differential scanning calorimetry. Furthermore, the non-isothermal crystallization behavior of the copolyesters was investigated. It was observed that both crystallinity and crystallization rate of the PETtBI copolyesters tend to decrease largely with the comonomeric content, except for the copolymer containing 5 mol% of tBI units, which crystallized faster than PET. Fiber X-ray diffraction patterns of the semicrystalline PETtBI copolyesters proved that they adopt the same triclinic crystal structure as PET with the comonomeric units being excluded from the crystalline phase. Although PETtBI copolyesters became brittle for higher contents in tBI, the tensile modulus and strength of PET were barely affected by copolymerization. The ncorporation of tBI units slightly increased the permeability of PET, but copolymers containing up to 20 mol% of the comonomeric units were still able to present barrier properties.
Resumo:
Boron adsorption was studied in five representative soils (Rhodic Hapludox, Arenic Paleudalf and three Typic Hapludox) from the State of São Paulo, Brazil. Adsorption was higher in the clayey Oxisols, followed by the Alfisol and the coarser Oxisols. Calcium carbonate promoted an increase in the amount of adsorbed boron in all soils, with the most pronounced effect in the coarser-textured Oxisols. High correlation coefficients were found between adsorbed boron and clay and amorphous aluminum oxide contents and specific surface area (r = 0.79, 0.76 and 0.73, respectively, p < 0.01). Clay content, free aluminum oxide, and hot CaCl2 (0.01 mol L-1)-extracted boron explained 93% of the variation of adsorbed boron. Langmuir and Freundlich isotherms fitted well to the adsorbed data, and highest values for maximum boron adsorption were found in clayey soils, which were significantly correlated with contents of total, free and amorphous iron and aluminum oxides, as well with the physical attributes. Ninety four percent of the variation in the maximum adsorption could be related to the free iron content.
Resumo:
Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
Summary: Selenium status in organic and conventional dairy herds in South-Savo, Finland
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
Mild to moderate forms of orbitopathy are common in auto-immune thyroid diseases, whereas severe forms are rare. Euthyroidism restoration, no smoking, and ocular local lubricants are necessary for all the patients. In case of mild orbitopathy, treatment by selenium is now indicated. Active forms of thyroid orbitopathy are better treated by IV steroids. Surgery is indicated in optic neuropathy resistant to steroids and in sequellar forms of the disease.
Resumo:
An old erg covers the northern part of the Lake Chad basin. This dune landform allowed the formation of many inter- dune ponds of various sizes. Still present in certain zones where the groundwater level is high (e.g. Kanem, southern Manga), these ponds formed in the past a vast network of lacustrine microsystems, as shown by the nature and the dis- tribution of their deposits. In the Manga, these interdune deposits represent the main sedimentary records of the Holo- cene environmental succession. Their paleobiological (pollens, diatoms, ostracods) and geochemical (δ18O, δ13C, Sr/ Ca) contents are often the basis for paleoenvironmental reconstruction. On the other hand, their sedimentological char- acters are rarely exploited. This study of palustro-lacustrine deposits of the Holocene N'Guigmi lake (northern bank of the Lake Chad; Niger) is based on the relationships between the sedimentological features and the climato-hydrological fluctuations. The mineralogical parameters (e.g. calcium carbonate content, clay mineralogy) and the nature of autoch- thonous mineralization (i.e. amorphous silica, clays, calcium carbonates) can be interpreted using a straightforward hy- dro-sedimentary model. Established to explain the geochemical dynamics of Lake Chad, this model is based on a bio- geochemical cycle of the main elements (i.e. silicium, calcium) directly controlled by the local hydrological balance (i.e. rainfall/evaporation ratio). All these results show that a detailed study of sedimentological features can provide impor- tant paleohydrological informations about the regional aridification since ca 6500 14C BP.