868 resultados para American Home Economics Association.
Resumo:
Metabolic and endocrine adaptations to support milk production during the transition period vary between individual cows. This variation between cows to adapt to lactation may have a genetic basis. The present field study was carried out to determine hepatic adaptations occurring from late pregnancy through early lactation by measuring mRNA abundance of candidate genes in dairy cows on-farm. Additionally, the objective was to observe the diversity in inter-individual variation for the candidate genes that may give indications where individual adaptations at a molecular level can be found. This study was carried out on-farm including 232 dairy cows (parity >3) from 64 farms in Switzerland. Blood and liver samples were collected on d 20+/-7 before parturition, on d 24+/-2, and on d 89+/-4 after parturition. Blood plasma was assayed for concentrations of glucose, nonesterified fatty acids, beta-hydroxybutyrate, cholesterol, triglycerides, urea, albumin, protein, insulin, insulin-like growth factor-1, leptin, 3,5,3'-triiodothyronine, and thyroxine. Liver samples were obtained at the same time points and were measured for mRNA abundance of 26 candidate genes encoding enzymes and nuclear receptors involved in gluconeogenesis, fatty acid beta-oxidation, fatty acid and triglyceride synthesis, ketogenesis, citric acid cycle, cholesterol synthesis, and the urea cycle. The cows in the present study experienced a marked metabolic load in early lactation, as presented by changes in plasma metabolites and hormones, and responded accordingly with upregulation and downregulation of almost all candidate genes involved in metabolic processes in the liver. The observed inter-individual variation for the candidate genes, which was highest for acetyl-CoA-carboxylase and glycerol-3-phosphate dehydrogenase 2, should be further investigated to unravel the regulation at molecular level for optimal adaptive performance in dairy cows.
Resumo:
Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.
Resumo:
Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.
Resumo:
OBJECTIVE: To analyze myoelectric activity of the ileum, cecum, proximal loop of the ascending colon (PLAC), and spiral colon in cows with naturally occurring cecal dilatation-dislocation (CDD) and compare findings with those in healthy cows. ANIMALS: 8 CDD-affected and 6 healthy control cows. PROCEDURES: Immediately after diagnosis, CDD-affected cows underwent surgery; control cows underwent a similar surgical procedure. Before completion of surgery, 8 bipolar silver electrodes were implanted in the ileum (n = 2), cecum (1), PLAC (1), and spiral colon (4) of each cow. Beginning the day after surgery, intestinal myoelectric activity was recorded daily (8-hour period) for 4 days; data were analyzed by use of specialized software programs. Quantitative variables of myoelectric activity were compared between groups. RESULTS: Cows of both groups recovered without complications after surgery. In control cows, physiologic myoelectric activity was recorded in all intestinal segments on all days after surgery. Apparently normal myoelectric activity was evident in the ileum of CDD-affected cows on the first day after surgery, but myoelectric activity patterns in the cecum, PLAC, and spiral colon were variable with no organized cyclic myoelectric patterns, incomplete or normally organized migrating myoelectric complexes, and slow normalization over time. CONCLUSIONS AND CLINICAL RELEVANCE: After surgery for CDD, normal myoelectric patterns were disrupted in the large intestine of cows, especially in the spiral colon. Clinical recovery with effective transit of ingesta occurred before normalization of myoelectric activity in the large intestine. Therapeutic protocols for restoration or normalization of spiral colon motility should be developed for treatment of CDD-affected cattle.
Resumo:
Beta-lactoglobulin (beta-LG) is the major whey protein in cow's milk. It is well established that the predominant 2 genetic variants, beta-LG A and B, are differentially expressed. Extensive investigation of the genetic variation in the promoter region of the BLG gene revealed the existence of specific haplotypes associated with the A and B variants, respectively. However, the genetic basis for the differential expression of BLG A and B alleles is still elusive. We have previously reported a quantitative beta-LG B variant, characterized by a very low beta-LG protein expression level. Here, we report that the corresponding BLG allele (BLG B*) shows a correspondingly low mRNA expression level. Comparative DNA sequencing of 7,670 bp of the BLG B* allele and the established BLG B allele revealed a unique difference of a C to A transversion at position 215 bp upstream of the translation initiation site (g.-215C>A). This mutation segregated perfectly with the differential phenotypic expression in a paternal half-sib family and could be confirmed in 2 independent cases. The sequence of the BLG B allele in the region of the mutation is highly conserved among 4 related ruminant species. The site of the mutation corresponds to a putative consensus-binding sequence for the transcription factors c-Rel and Elk-1 as predicted by searching the TRANSFAC database. The beta-LG B* site might be relevant in the natural production of milk of low beta-LG content.
Resumo:
OBJECTIVE: To describe the distribution of muscarinic receptor subtypes M(1) to M(5) and interstitial cells of Cajal (ICCs) in the gastrointestinal tract of healthy dairy cows. SAMPLE POPULATION: Full-thickness samples were collected from the fundus, corpus, and pyloric part of the abomasum and from the duodenum, ileum, cecum, proximal loop of the ascending colon, and both external loops of the spiral colon of 5 healthy dairy cows after slaughter. PROCEDURES: Samples were fixed in paraformaldehyde and embedded in paraffin. Muscarinic receptor subtypes and ICCs were identified by immunohistochemical analysis. RESULTS: Staining for M(1) receptors was found in the submucosal plexus and myenteric plexus. Antibodies against M(2) receptors stained nuclei of smooth muscle cells only. Evidence of M(3) receptors was found in the lamina propria, in intramuscular neuronal terminals, on intermuscular nerve fibers, and on myocytes of microvessels. There was no staining for M(4) receptors. Staining for M(5) receptors was evident in the myocytes of microvessels and in smooth muscle cells. The ICCs were detected in the myenteric plexus and within smooth muscle layers. Distribution among locations of the bovine gastrointestinal tract did not differ for muscarinic receptor subtypes or ICCs. CONCLUSIONS AND CLINICAL RELEVANCE: The broad distribution of M(1), M(3), M(5), and ICCs in the bovine gastrointestinal tract indicated that these components are likely to play an important role in the regulation of gastrointestinal tract motility in healthy dairy cows. Muscarinic receptors and ICCs may be implicated in the pathogenesis of motility disorders, such as abomasal displacement and cecal dilatation-dislocation.
Resumo:
OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.
Resumo:
OBJECTIVE: To investigate the distribution of mRNA coding for 9 adrenoceptor subtypes in the intestines of healthy dairy cows and cows with cecal dilatationdislocation (CDD). SAMPLE POPULATION: Full-thickness specimens of the intestinal wall were obtained from the ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of 15 cows with CDD (group 1) and 15 healthy (control) cows (group 2, specimens collected during laparotomy; group 3, specimens collected after slaughter). PROCEDURES: Concentrations of mRNA for 9 adrenoceptor subtypes (alpha(1A), alpha(1B), alpha(1D), alpha(2AD), alpha(2B), alpha(2C), beta(1), beta(2), and beta(3)) were measured by quantitative real-time reverse transcriptase-PCR assay. Results were expressed relative to mRNA expression of a housekeeping gene. RESULTS: Expression of mRNA for alpha(1B)-, alpha(2AD)-, alpha(2B)-, beta(1)-, and beta(2)-adrenoceptors was significantly lower in cows with CDD than in control cows. In the ileum, these receptors all had lower mRNA expression in cows with CDD than in control cows. The same effect was detected in the ELSC for mRNA for alpha(2AD)-, alpha(2B)-, beta(1)-, and beta(2)-adrenoceptors, and in the cecum and PLAC for alpha(2B)- and beta(2)-adrenoceptors. Groups did not differ significantly for alpha(1A)-adrenoceptors. The mRNA expression for alpha(1D)-, alpha(2C)-, and beta(3)-adrenoceptors was extremely low in all groups. CONCLUSIONS AND CLINICAL RELEVANCE: Differences in expression of mRNA coding for adrenoceptors, most pronounced in the ileum and spiral colon, between cows with CDD and control cows support the hypothesis of an implication of adrenergic mechanisms in the pathogenesis of CDD in dairy cows.
Resumo:
OBJECTIVE: To investigate the distribution of mRNA coding for 7 subtypes of 5-hydroxytryptamine receptors (5-HTRs) in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation (CDD). SAMPLE POPULATION: Full-thickness intestinal wall biopsy specimens were obtained from the ileum, cecum, proximal loop of the ascending colon, and external loop of the spiral colon (ELSC) of 15 cows with CDD (group 1) and 15 healthy dairy cows allocated to 2 control groups (specimens collected during routine laparotomy [group 2] or after cows were slaughtered [group 3]). PROCEDURE: Amounts of mRNA coding for 7 subtypes of 5-HTRs (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT4) were measured by quantitative real-time reverse transcriptase-PCR assay. Results were expressed as the percentage of mRNA expression of a housekeeping gene. RESULTS: Expression of mRNA coding for 5-HTR1B, 5-HTR2B, and 5-HTR4 was significantly lower in cows with CDD than in healthy cows. For 5-HTR2B and 5-HTR4, significant differences between cows with CDD and control cows were most pronounced for the ELSC. Expression of mRNA for 5-HTR1D, 5-HTR1F, and 5-HTR2A was extremely low in all groups, and mRNA for 5-HTR1A was not detected. CONCLUSIONS AND CLINICAL RELEVANCE: Relative concentrations of mRNA coding for 5-HTR1B, 5-HT2B, and 5-HTR4 were significantly lower in the intestines of cows with CDD than in the intestines of healthy dairy cows, especially for 5-HT2B and 5-HTR4 in the ELSC. This supports the hypothesis that serotonergic mechanisms, primarily in the spiral colon, are implicated in the pathogenesis of CDD.
Resumo:
Milk cortisol concentration was determined under routine management conditions on 4 farms with an auto-tandem milking parlor and 8 farms with 1 of 2 automatic milking systems (AMS). One of the AMS was a partially forced (AMSp) system, and the other was a free cow traffic (AMSf) system. Milk samples were collected for all the cows on a given farm (20 to 54 cows) for at least 1 d. Behavioral observations were made during the milking process for a subset of 16 to 20 cows per farm. Milk cortisol concentration was evaluated by milking system, time of day, behavior during milking, daily milk yield, and somatic cell count using linear mixed-effects models. Milk cortisol did not differ between systems (AMSp: 1.15 +/- 0.07; AMSf: 1.02 +/- 0.12; auto-tandem parlor: 1.01 +/- 0.16 nmol/L). Cortisol concentrations were lower in evening than in morning milkings (1.01 +/- 0.12 vs. 1.24 +/- 0.13 nmol/L). The daily periodicity of cortisol concentration was characterized by an early morning peak and a late afternoon elevation in AMSp. A bimodal pattern was not evident in AMSf. Finally, milk cortisol decreased by a factor of 0.915 in milking parlors, by 0.998 in AMSp, and increased by a factor of 1.161 in AMSf for each unit of ln(somatic cell count/1,000). We conclude that milking cows in milking parlors or AMS does not result in relevant stress differences as measured by milk cortisol concentrations. The biological relevance of the difference regarding the daily periodicity of milk cortisol concentrations observed between the AMSp and AMSf needs further investigation.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Resumo:
There has been a rapid rise in the emergence of multi-drug-resistant pathogens in the past 10 to 15 yr and some bacteria are now resistant to most antimicrobial agents. Antibiotic use is very restricted on Swiss organic dairy farms, and a purely prophylactic use, such as for dry cow mastitis prevention, is forbidden. A low prevalence of antibiotic resistance in organic farms can be expected compared with conventional farms because the bacteria are infrequently or not exposed to antibiotics. The occurrence of antibiotic resistance was compared between mastitis pathogens (Staphylococcus aureus, nonaureus staphylococci, Streptococcus dysgalactiae, Streptococcus uberis) from farms with organic and conventional dairy production. Clear differences in the percentage of antibiotic resistance were mainly species-related, but did not differ significantly between isolates from cows kept on organic and conventional farms, except for Streptococcus uberis, which exhibited significantly more single resistances (compared with no resistance) when isolated from cows kept on organic farms (6/10 isolates) than on conventional farms (0/5 isolates). Different percentages were found (albeit not statistically significant) in resistance to ceftiofur, erythromycin, clindamycin, enrofloxacin, chloramphenicol, penicillin, oxacillin, gentamicin, tetracycline, and quinupristin-dalfopristin, but, importantly, none of the strains was resistant to amoxicillin-clavulanic acid or vancomycin. Multidrug resistance was rarely encountered. The frequency of antibiotic resistance in organic farms, in which the use of antibiotics must be very restricted, was not different from conventional farms, and was contrary to expectation. The antibiotic resistance status needs to be monitored in organic farms as well as conventional farms and production factors related to the absence of reduced antibiotic resistance in organic farms need to be evaluated.
Resumo:
OBJECTIVE: To investigate the feasibility of evoking the nociceptive withdrawal reflex (NWR) from fore and hind limbs in conscious dogs, score stimulus-associated behavioral responses, and assess the canine NWR response to suprathreshold stimulations. ANIMALS: 8 adult Beagles. PROCEDURE: Surface electromyograms evoked by transcutaneous electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and tibialis cranialis muscles. Train-of-five pulses (stimulus(train)) were used; reflex threshold (I(t train)) was determined, and recruitment curves were obtained at 1.2, 1.5, and 2 x I(t train). Additionally, a single pulse (stimulus(single)) was given at 1, 1.2, 1.5, 2, and 3 x I(t train). Latency and amplitude of NWRs were analyzed. Severity of behavioral reactions was subjectively scored. RESULTS: Fore- and hind limb I(t train) values (median; 25% to 75% interquartile range) were 2.5 mA (2.0 to 3.6 mA) and 2.1 mA (1.7 to 2.9 mA), respectively. At I(t train), NWR latencies in the deltoideus, cleidobrachialis, biceps femoris, and cranial tibialis muscles were not significantly different (19.6 milliseconds [17.1 to 20.5 milliseconds], 19.5 milliseconds [18.1 to 20.7 milliseconds], 20.5 milliseconds [14.7 to 26.4 milliseconds], and 24.4 milliseconds [17.1 to 40.5 milliseconds], respectively). Latencies obtained with stimulus(train) and stimulus(single) were similar. With increasing stimulation intensities, NWR amplitude increased and correlated positively with behavioral scores. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, the NWR can be evoked from limbs and correlates with behavioral reactions. Results suggest that NWR evaluation may enable quantification of nociceptive system excitability and efficacy of analgesics in individual dogs.
Resumo:
Seventy-six dogs with clinical acquired atrioventricular valvular disease were evaluated to determine the efficacy of pimobendan (n=41) versus benazepril hydrochloride (n=35) in a randomized, positive-controlled, multicenter study. The study was divided into 56-day and long-term evaluation periods. In a subgroup of dogs with concurrent furosemide treatment (pimobendan [n=31], benazepril [n=25]), the Heart Insufficiency Score improved in favor of pimobendan (P=0.0011), equating to a superior overall efficacy rating (P<0.0001) at day 56. Long-term median survival (i.e., death or treatment failure) for dogs receiving pimobendan was 415 days versus 128 days for dogs not on pimobendan (P=0.0022).
Resumo:
The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.