981 resultados para Alpha 7 Nicotinic Receptors
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are members of the steroid/thyroid nuclear receptor superfamily of ligand-activated transcription factors. To date, three isotypes have been identified, alpha, beta and gamma, encoded by three different genes. The alpha isotype is expressed at high levels in the liver where it has a role in lipid oxidation. Its expression and activity follow a diurnal rhythm that parallels the circulating levels of corticosterone in the bloodstream. The gamma isotype on the other hand, is mainly expressed in adipose tissue and has a critical role in adipocyte differentiation and lipid storage. The function of the ubiquitously expressed isotype, PPAR beta, remains to be determined. Besides fulfilling different roles in lipid metabolism, the different PPAR isotypes also have different ligand specificities. A new approach to identify ligands was developed based on the ligand-dependent interaction of PPAR with the recently characterized co-activator SRC-1. This so-called CARLA assay has allowed the identification of fatty acids and eicosanoids as PPAR ligands. Although the evidence clearly links PPAR isotypes to distinct functions, the molecular basis for this isotype-specificity is still unclear. All three isotypes are able to bind the same consensus response element, formed by a direct repeat of two AGGTCA hexamers separated by one base, though with different affinities. We recently demonstrated that besides the core DR-1 element, the 5' flanking sequence should be included in the definition of a PPRE. Interestingly, the presence of this flanking sequence is of particular importance in the context of PPAR alpha binding. Moreover, it reflects the polarity of the PPAR-RXR heterodimer on DNA, with PPAR binding to the 5' half-site and RXR binding to the 3' half-site. This unusual polarity may confer unique properties to the bound heterodimer with respect to ligand binding and interaction with co-activators and corepressors.
Resumo:
The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.
Resumo:
MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.
Resumo:
After encountering antigens, naïve CD4+ Τ cells can differentiate into various effector Τ helper (Th) cell subsets, including CD4+ Thi, Th2, Thi7, regulatory Τ cells and the recently described follicular Τ helper cells (TFH cells). To date, most of the studies used either gain-of-function approaches that do not reflect the physiological Notch signaling intensity or loss-of-function models that block the entire Notch pathway. The contribution of single Notch receptors during Th differentiation occurring upon infection has not been investigated yet. In the present thesis, we wanted to assess the individual role of Notchi and Notch2 in Th differentiation, by using mice with Τ cell-specific deletion of Notchi, Notch2 or both (NiN2/iCD4Cre) in different models of infection/immunization.¦In the first part, we characterized the role of Notchi and Notch2 in Thi differentiation. We used experimental infection with the protozoan parasite Leishmania major, known to induce a protective Thi immune response in mice on the C57BL/6 background. Mice deficient for both Notchi and Notch2 developed unhealing lesions and were unable to control the parasite burden in their footpad. A profound defect in IFNy secretion by CD4+ Τ cells was shown to be responsible for the susceptibility of these mice. Although CD4+ Τ cells did not secrete IFNy following L. major infection, they exhibited higher IFNymRNA expression as well as higher frequency of CD4+IFNy+Τ cells in dLN. Altogether, these data indicate that Notch is dispensable for the differentiation of Thi cells expressing IFNy but controls, directly or not, the secretion of IFNy, allowing the development of a fully functional Thi immune response.¦In the second part of this thesis, we determined whether Notch is involved in differentiation of follicular Τ helper (TFH) cells. Using different models of immunization (NP-CGG, Schistosoma mansoni eggs) or infection (Leishmania mexicana), we showed that NiN2ACD4Cre mice were unable to generate TFH cells, displayed impaired germinal center (GC) formation as well as a profound defect in high affinity specific-antibodies secretion. We demonstrated an essential and previously unknown role of Notch in TFH cell development, the consequent GC formation and high affinity antibodies secretion, although the mechanisms by which Notch affects TFH development remain to be clearly demonstrated.¦-¦Lors d'une réponse immune, les lymphocytes Τ CD4+ se différencient en différentes sous- populations de lymphocytes Τ auxiliaires (T helper ou Th en anglais) incluant les populations de cellules Thi, Th2, Thn.7, Τ régulatrices ou Τ folliculaires. De nombreuses études ont montré un rôle de la voie de signalisation Notch dans la différentiation des lymphocytes Τ auxiliaires, bien que les résultats soient controversés. A ce jour, la majorité de ces études sont basées sur des modèles de gain de fonction qui ne reflètent pas le niveau physiologique du signal ou des modèles de perte de fonction pour lesquels toute la voie de signalisation est bloquée. De ce fait, nous avons voulu établir le rôle individuel de Notchi et Notch2 dans la réponse immune de type Thi et dans la différentiation des lymphocytes Τ auxiliaires folliculaires avec l'aide de souris déficientes pour Notchi, Notch2 ou les 2 (NiN2ACD4Cre) à la surface de leurs cellules T.¦Dans la première partie de cette thèse, nous avons analysé le rôle de Notch dans la différentiation de type Thi suite à infection avec le parasite Leishmania major, connu pour induire une forte réponse Thi dans des souris de souche C57BL/6. Les souris déficientes pour Notchi et Notch2 développent une importante lésion et sont incapables de contrôler la prolifération du parasite au site d'infection. Le profond défaut de la sécrétion d'IFNy par les cellules Τ des ganglions drainants est probablement responsable de la susceptibilité de ces souris à L. major. Bien que les cellules Τ ne sécrètent pas d'IFNy, nous avons observé des niveaux plus importants d'expression au niveau de l'ARN messager, et une proportion plus élevée de cellules positives pour CD4 et IFNy. Ces résultats indiquent que Notch est nécessaire pour la sécrétion d'IFNy mais pas pour la différentiation de cellules compétentes pour l'IFNy.¦Dans un second temps, nous avons voulu déterminer si Notch est impliqué dans la différentiation des cellules Τ folliculaires. En utilisant divers modèles d'immunisation (avec NP-CGG ou des oeufs de Schistosoma mansoni) ou d'infection (avec L. mexicana), nous avons montré que les souris NlN2ACD4Cre sont incapables de générer des cellules Τ folliculaires. En conséquence, la formation des centres germinatifs et la sécrétion d'anticorps de haute affinité sont profondément affectés. Nous avons démontré dans cette seconde partie un rôle crucial et inconnu à ce jour de Notch dans la différentiation des cellules Τ et en conséquence dans la formation des centres germinatifs et la sécrétion des anticorps de haute affinité, bien que les mécanismes par lesquels Notch contrôle cette différentiation restent à identifier.¦-¦Lors d'une réponse immune, les lymphocytes Τ CD// se différencient en différentes sous- populations de lymphocytes Τ auxiliaires de types Thi, Th2, Thi7, régulatrices ou folliculaires, définies selon la sécrétion de cytokines spécifiques. Le rôle de ces sous-populations dans le contrôle de diverses infections ou leur association avec de nombreuses maladies rend la compréhension des mécanismes de différentiation de ces cellules particulièrement importante. De nombreux facteurs sont impliqués dans ce processus, tels que la présence de diverses cytokines dans l'environnement, la nature de l'antigène ou encore la force de la stimulation. Par ailleurs, de nombreuses études ont montré un rôle de la voie de signalisation Notch dans la différentiation des lymphocytes T, bien que les résultats soient controversés. Dans cette thèse, nous avons voulu évaluer le rôle individuel des récepteurs Notch dans la différentiation des cellules Τ auxiliaires de type Thi et folliculaires à l'aide de souris dont les récepteurs Notch sont spécifiquement absents à la surface des lymphocytes T.¦Dans la première partie, nous avons utilisé le modèle d'infection au parasite Leishmania major, connu pour induire une forte réponse protectrice de type Thi dans la majorité des souches de souris. Suite à l'infection, les souris déficientes pour les récepteurs Notch sont incapables de contrôler la prolifération du parasite et développent une importante lésion au site d'infection. Cette susceptibilité est due à l'incapacité des cellules Τ auxiliaires à sécréter une cytokine spécifique des cellules de type Thi et nécessaire à l'éradication du parasite, l'IFNy. Ces résultats indiquent que les récepteurs Notch sont indispensables au développement d'une réponse Thi fonctionnelle, permettant la guérison suite à l'infection avec L. major.¦Dans la deuxième partie de cette thèse, nous avons voulu déterminer si Notch est impliqué dans la différentiation des lymphocytes Τ folliculaires. Ces cellules ont la particularité d'aider les lymphocytes Β à former des centres germinatifs au sein desquels les lymphocytes Β prolifèrent et sécrètent des anticorps, un processus nécessaire à la protection contre les pathogènes. Actuellement, l'efficacité de la majorité des vaccins repose sur la sécrétion d'anticorps par les lymphocytes B, aidés par les cellules Τ folliculaires. En raison du rôle important de ces cellules dans l'éradication des pathogènes et lors d'un processus de vaccination, il est important de connaître les facteurs et les mécanismes permettant la différentiation de ces cellules. Dans cette étude, nous montrons que la formation des cellules Τ folliculaires dépend de la voie de signalisation Notch, impliquant un rôle essentiel de cette molécule dans l'induction de la sécrétion d'anticorps par les lymphocytes B.
Resumo:
Anti-TNF alpha are immunomodulatory treatments prescribed for some rheumatologic inflammatory diseases (ex: spondylarthropathy, rheumatoid polyarthritis). The randomised studies suggested that anti-TNF alpha therapy is associated with an overall risk of infectious diseases. The results of the observational studies are more reassuring. In this article, we will describe some results of theses studies and propose some practical recommendations in use of the anti-TNF alpha therapy.
Resumo:
Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.
Resumo:
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.
Resumo:
Neuropeptide-Y (NPY) is a 36-amino acid peptide known to inhibit glucose-stimulated insulin secretion in various animal models in vitro and in vivo. NPY is thought to be one of the mediators of sympathetic action in the pancreas through nerve endings surrounding the islets, and it has recently been shown to be synthesized within the islets of Langerhans. To elucidate the potential role of NPY in the endocrine pancreas, we studied the expression and regulation of NPY secretion in a rat insulinoma cell line (INS-1). NPY mRNA and peptide are highly expressed and secreted by INS-1 cells. NPY levels were determined by a sensitive and specific two-site amplified enzyme-linked immunosorbent assay. Incubation of INS-1 cells with various glucose concentrations did not modify NPY secretion; however, stimulation of adenylate cyclase by forskolin induced a dose- and time-dependent increase in NPY release in the medium. The glucagon-like peptide-I-(7-36) amide (GLP-1), a known gluco-incretin in humans, induced at low concentration (10(-9) M) a similar expression of NPY mRNA and peptide secretion in INS-1 cells. On the other hand, the inhibition of cAMP accumulation by the alpha 2-adrenergic agonist clonidine decreased NPY secretion. In conclusion, 1) high levels of gene expression and secretion of NPY are found in a rat insulinoma cell line (INS-1). 2) Accumulation of cAMP induced by forskolin or a gluco-incretin (GLP-1) induces a further increase in NPY gene expression and release. 3) NPY secretion is not modulated by low or high glucose concentrations in the medium. 4) Induction of NPY, a known inhibitor of insulin secretion, may represent a novel counterregulatory mechanism of insulin secretion, limiting the stimulatory effect of GLP-1 on insulin secretion.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a nuclear receptor that is mainly expressed in tissues with a high degree of fatty acid oxidation such as liver, heart, and skeletal muscle. Unsaturated fatty acids, their derivatives, and fibrates activate PPARalpha. Male rats are more responsive to fibrates than female rats. We therefore wanted to investigate if there is a sex difference in PPARalpha expression. Male rats had higher levels of hepatic PPARalpha mRNA and protein than female rats. Fasting increased hepatic PPARalpha mRNA levels to a similar degree in both sexes. Gonadectomy of male rats decreased PPARalpha mRNA expression to similar levels as in intact and gonadectomized female rats. Hypophysectomy increased hepatic PPARalpha mRNA and protein levels. The increase in PPARalpha mRNA after hypophysectomy was more pronounced in females than in males. GH treatment decreased PPARalpha mRNA and protein levels, but the sex-differentiated secretory pattern of GH does not determine the sex-differentiated expression of PPARalpha. The expression of PPARalpha mRNA in heart or soleus muscle was not influenced by gender, gonadectomy, hypophysectomy, or GH treatment. In summary, pituitary-dependent hormones specifically regulate hepatic PPARalpha expression. Sex hormones regulate the sex difference in hepatic PPARalpha levels, but not via the sexually dimorphic GH secretory pattern.
Resumo:
OBJECTIVE: The basolateral Na pump drives renotubular reabsorption. In cultured renal cells, mutant adducins, as well as sub-nanomolar ouabain concentrations, stimulate the Na-K pump. METHODS: To determine whether these factors interact and affect Na handling and blood pressure (BP) in vivo, we studied 155 untreated hypertensive patients subdivided on the basis of their plasma endogenous ouabain or alpha-adducin genotype (ADD1 Gly460Trp-rs4961). RESULTS: Under basal conditions, proximal tubular reabsorption and plasma Na were higher in patients with mutated Trp ADD1 or increased endogenous ouabain (P = 0.002 and 0.05, respectively). BPs were higher in the high plasma endogenous ouabain group (P = 0.001). Following volume loading, the increment in BP (7.73 vs. 4.81 mmHg) and the slopes of the relationship between BP and Na excretion were greater [0.017 +/- 0.002 vs. 0.009 +/- 0.003 mmHg/(muEq min)] in ADD1 Trp vs. ADD1 Gly carriers (P < 0.05). BP changes were similar, whereas the slopes of the relationship between BP and Na excretion were lower [0.016 +/- 0.003 vs. 0.008 +/- 0.002 mmHg/(muEq min)] in patients with low vs. high endogenous ouabain (P < 0.05). In patients with high endogenous ouabain, volume loading increased the BP in the ADD1 Trp group but not in the Gly group (P < 0.05). Thus, patients with ADD1 Trp alleles are sensitive to salt and tubular Na reabsorption remains elevated after volume expansion. CONCLUSION: With saline loading, BP changes are similar in high and low endogenous ouabain patients, whereas tubular Na reabsorption increases in the high endogenous ouabain group. Saline loading unmasks differences in renal Na handling in patients with mutant adducin or high endogenous ouabain and exposes an interaction of endogenous ouabain and Trp alleles on BP.
Resumo:
The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)