988 resultados para All-optical packet routing
Resumo:
The present data publication provides permanent links to original and updated versions of validated data files. The data files include properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
Resumo:
In this article, we investigate the parameters used in the MOCVD growth of GaAsN epilayers on GaAs substrates and some of their microstructures and optical properties. The N incorporation was found to mainly depend on the growth temperature and the fractional 1,1-dimethylhydrazine molar flow. A thin highly strained interface layer was observed between GaAsN and GaAs, which, contrary to previously published results, was not N enriched. The low-temperature (10 K) photoluminescence spectra were composed of several emissions that we attribute to a combination of interband transition and transitions involving localized defect states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be nonidealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a nondeterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing nonideal photon counters, which have finite bandwidth and time response.
Resumo:
We present the largest catalogue to date of optical counterparts for H I radio-selected galaxies, HOPCAT. Of the 4315 H I radio-detected sources from the H I Parkes All Sky Survey (HIPASS) catalogue, we find optical counterparts for 3618 (84 per cent) galaxies. Of these, 1798 (42 per cent) have confirmed optical velocities and 848 (20 per cent) are single matches without confirmed velocities. Some galaxy matches are members of galaxy groups. From these multiple galaxy matches, 714 (16 per cent) have confirmed optical velocities and a further 258 (6 per cent) galaxies are without confirmed velocities. For 481 (11 per cent), multiple galaxies are present but no single optical counterpart can be chosen and 216 (5 per cent) have no obvious optical galaxy present. Most of these 'blank fields' are in crowded fields along the Galactic plane or have high extinctions. Isolated 'dark galaxy' candidates are investigated using an extinction cut of A(Bj) < 1 mag and the blank-fields category. Of the 3692 galaxies with an A(Bj) extinction < 1 mag, only 13 are also blank fields. Of these, 12 are eliminated either with follow-up Parkes observations or are in crowded fields. The remaining one has a low surface brightness optical counterpart. Hence, no isolated optically dark galaxies have been found within the limits of the HIPASS survey.
Resumo:
We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.
Resumo:
Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we do a detailed numerical investigation of the fault-tolerant threshold for optical cluster-state quantum computation. Our noise model allows both photon loss and depolarizing noise, as a general proxy for all types of local noise other than photon loss noise. We obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible in the combined presence of both noise types, provided that the loss probability is less than 3 X 10(-3) and the depolarization probability is less than 10(-4). Our fault-tolerant protocol involves a number of innovations, including a method for syndrome extraction known as telecorrection, whereby repeated syndrome measurements are guaranteed to agree. This paper is an extended version of Dawson.
Resumo:
In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities < 3x10(-3), and for depolarization probabilities < 10(-4).
Resumo:
Email has been used for some years as a low-cost telemedicine medium to provide support for developing countries. However, all operations have been relatively small scale and fairly labour intensive to administer. A scalable, automatic message-routing system was constructed which automates many of the tasks. During a four-month study period in 2002, 485 messages were processed automatically. There were 31 referrals from eight hospitals in three countries. These referrals were handled by 25 volunteer specialists from a panel of 42. Two system operators, located 10 time zones apart, managed the system. The median time from receipt of a new referral to its allocation to a specialist was 1.0 days (interquartile range 0.7-2.4). The median interval between allocation and first reply was 0.7 days (interquartile range 0.3-2.3). Automatic message handling solves many of the problems of manual email telemedicine systems and represents a potentially scalable way of doing low-cost telemedicine in the developing world.
Resumo:
The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter. We propose a simple method for including noise within a scalar model which will allow both the noise-noise dominated limit and the signal-noise dominated limit to be treated consistently. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Macular pigment (MP) is the collective name for three carotenoids, lutein, zeaxanthin and meso-zeaxanthin, which are found at high concentrations in the central macula. The macular carotenoids, like all carotenoids, are entirely of dietary origin. The term ‘macular pigment optical density’ (MPOD) refers to the peak concentration of MP in the retina, which varies from one individual to the next and is measurable in vivo. On account of its blue-light-filtering and antioxidant properties, MP has become a subject of interest with respect to age-related macular degeneration (AMD), the hypothesis being that MP helps to protect against AMD; the higher the MPOD, the lower the risk for AMD. Recently, a new MPOD-measuring device, the MPS 9000 (MPS), entered the ophthalmic market. Using this device, the research described here aimed to contribute new information to the MP literature. A second MPOD instrument, the Macular Pigment Reflectometer, was also used at times, but a reliability study (included in the thesis) demonstrated that it was unsuitable for use on its own. First, a series of exploratory investigations were undertaken to maximize the accuracy and consistency of MPOD measurements taken with the MPS; a protocol was established that substantially improved repeatability. Subsequently, a series of MPOD-based studies were conducted on anisometropia, South Asian race, blue-light-filtering contact lenses, and dietary modification with kale. The principle findings were as follows: interocular MPOD differences were not attributable to interocular refractive error differences; young adults of South Asian origin had significant gender-related MPOD differences (males>females, p<0.01), and they also had significantly higher MPOD than Caucasians (p<0.0005); wearing blue-light-filtering contact lenses for eight months did not affect MPOD; and dietary modification with kale for 16 weeks did not increase MPOD. This body of research adds new insights to MP knowledge, which in turn may contribute to MP knowledge in the context of AMD.
Resumo:
Purpose. To assess the relationship between macular pigment optical density (MPOD) and blood markers for antioxidant defense in otherwise healthy volunteers. Methods. Forty-seven healthy volunteers were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. The level of MPOD was measured using heterochromatic flicker photometry. Systemic blood pressure (BP) parameters, heart rate (HR), body mass index (BMI), and plasma levels of total, HDL, and LDL cholesterol and triglycerides (TGs) were also determined. Results. A simple correlation model revealed that the level of MPOD correlated significantly and positively with both GSH (P < 0.001) and t-GSH (P < 0.001) levels but not with those of GSSG (P > 0.05). Age, sex, systemic BP parameters, HR, BMI, and plasma levels of cholesterol and TGs did not have any influence on either MPOD or glutathione levels (all P > 0.05). In addition, a forward stepwise multiple regression analysis showed MPOD to have a significantly and independent correlation with GSH levels (ß = 0.63; P < 0.001). Conclusions. In otherwise healthy older individuals, there is a positive correlation between local and systemic antioxidant defense mechanisms.