975 resultados para Africa, Southern
Resumo:
This study documents validation of vertebral band-pair formation in spotted gully shark (Triakis megalopterus) with the use of fluorochrome injection and tagging of captive and wild sharks over a 21-year period. Growth and mortality rates of T. megalopterus were also estimated and a demographic analysis of the species was conducted. Of the 23 OTC (oxytetracycline) -marked vertebrae examined (12 from captive and 11 from wild sharks), seven vertebrae (three from captive and four from wild sharks) exhibited chelation of the OTC and fluoresced under ultraviolet light. It was concluded that a single opaque and translucent band pair was deposited annually up to at least 25 years of age, the maximum age recorded. Reader precision was assessed by using an index of average percent error calculated at 5%. No significant differences were found between male and female growth patterns (P>0.05), and von Bertalanffy growth model parameters for combined sexes were estimated to be L∞=1711.07 mm TL, k=0.11/yr and t0=–2.43 yr (n=86). Natural mortality was estimated at 0.17/yr. Age at maturity was estimated at 11 years for males and 15 years for females. Results of the demographic analysis showed that the population, in the absence of fishing mortality, was stable and not significantly different from zero and particularly sensitive to overfishing. At the current age at first capture and natural mortality rate, the fishing mortality rate required to result in negative population growth was low at F>0.004/ yr. Elasticity analysis revealed that juvenile survival was the principal factor in explaining variability in population growth rate.
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
We determined the dis-tribution of multiple (n=68; 508−978 mm total length [TL]) striped bass (Morone saxatilis) along the estua-rine salinity gradient in the Mullica River−Great Bay in southern New Jersey over two years to determine the diversity of habitat use and the movements of striped bass. Ultrasoni-cally tagged fish were detected in this estuarine area by means of wireless hydrophones deployed at four gates inside the entrance of the study area and farther up to tidal freshwater (38 km). Numerous individuals frequently departed and returned to the estuary, primarily in the spring and late fall over periods of 15−731 days at liberty. The period of residency and degree of movement of individuals to and from the estuary varied extensively among seasons and years. The diversity of movements in and out of, as well as within, the estuary differed from the less-complex patterns reported in earlier studies, perhaps because of the comprehensive and synoptic nature of this study.
Resumo:
Endoparasitic helminths were inventoried in 483 American plaice (Hippoglossoides platessoides) collected from the southern Gulf of St. Lawrence, NAFO (North Atlantic Fisheries Organization) division 4T, and Cape Breton Shelf (NAFO subdivision 4Vn) in September 2004 and May 2003, respectively. Forward stepwise discriminant function analysis (DFA) of the 4T samples indicated that abundances of the acanthocephalans Echinorhynchus gadi and Corynosoma strumosum were significant in the classification of plaice to western or eastern 4T. Cross validation yielded a correct classification rate of 79% overall, thereby supporting the findings of earlier mark-recapture studies which have indicated that 4T plaice comprise two discrete stocks: a western and an eastern stock. Further analyses including 4Vn samples, however, indicated that endoparasitic helminths may have little value as tags in the classification of plaice overwintering in Laurentian Channel waters of the Cabot Strait and Cape Breton Shelf, where mixing of 4T and 4Vn fish may occur.
Resumo:
The Caranx hippos species complex comprises three extant species: crevalle jack (Caranx hippos) (Linnaeus, 1766) from both the western and eastern Atlantic oceans; Pacific crevalle jack (Caranx caninus) Günther, 1868 from the eastern Pacific Ocean; and longfin crevalle jack (Caranx fischeri) new species, from the eastern Atlantic, including the Mediterranean Sea and Ascension Island. Adults of all three species are superficially similar with a black blotch on the lower half of the pectoral fin, a black spot on the upper margin of opercle, one or two pairs of enlarged symphyseal canines on the lower jaw, and a similar pattern of breast squamation. Each species has a different pattern of hyperostotic bone development and anal-fin color. The two sympatric eastern Atlantic species also differ from each other in number of dorsal-and anal-fin rays, and in large adults of C. fischeri the lobes of these fins are longer and the body is deeper. Caranx hippos from opposite sides of the Atlantic are virtually indistinguishable externally but differ consistently in the expression of hyperostosis of the first dorsalfin pterygiophore. The fossil species Caranx carangopsis Steindachner 1859 appears to have been based on composite material of Trachurus sp. and a fourth species of the Caranx hippos complex. Patterns of hyperostotic bone development are compared in the nine (of 15 total) species of Caranx sensu stricto that exhibit hyperostosis.
Resumo:
Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.
Resumo:
There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts.
Resumo:
Fishery catch data on yellowfin tuna (Thunnus albacares) were examined to study the effects of El Niño events between 1990 and 1999 for an area in the northeastern tropical Pacific (18−24°N, 112−104°W). The data were extracted from a database of logbook records from the Mexican tuna purse-seine f leet. Latitudinal distribution of the catches increased from south to north for the 10-year period. Highest catches and effort were concentrated between 22°N and 23°N. This area accumulated 48% of the total catch over the 10year period. It was strongly correlated with El Niño-Southern Oscillation (ENSO) events. At least two periods of exceptionally high catches occurred following El Niño events in 1991 and 1997. Peaks of catches were triggered by the arrival of positive anomalies of sea surface temperature (SST) to the area. A delay of two to four months was observed between the occurrence of maximum SST anomalies at the equator and peaks of catch. Prior to these two events, negative SST anomalies were the dominant feature in the study area and catch was extremely low. This trend of negative SST anomalies with low catches followed by positive SST anomalies and high catches may be attributed to northward yellowfin tuna migration patterns driven by El Niño forcing, a result that contrasts with the known behavior of decreasing relative abundance of these tuna after El Niño events in the eastern Pacific. However, this decrease in relative abundance may be the result of a local or subregional effect.
Resumo:
A new species of the cottid genus Triglops Reinhardt is described on the basis of 21 specimens collected in Aniva Bay, southern Sakhalin Island, Russia, and off Kitami, on the northern coast of Hokkaido, Japan, at depths of 73–117 m. Of the ten species of Triglops now recognized, the new species, Triglops dorothy, is most similar to T. pingeli Reinhardt, well known from the North Atlantic and North Pacific oceans and throughout coastal waters of the Arctic. The new species differs from T. pingeli in a combination of morphometric and meristic characters that includes most importantly the number of dorsolateral scales; the number of oblique, scaled dermal folds below the lateral line; and the number of gill rakers.