878 resultados para Acute kidney injury
Resumo:
PURPOSE: To prospectively determine if changes in intrarenal oxygenation during acute unilateral ureteral obstruction can be depicted with blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained from all patients. BOLD MR imaging was performed in 10 male patients (mean age, 45 years +/- 17 [standard deviation]; range, 20-73 years) with a distal unilateral ureteral calculus and in 10 healthy age-matched male volunteers to estimate R2*, which is inversely related to tissue Po(2). R2* values were determined in the cortex and medulla of the obstructed and the contralateral nonobstructed kidneys. To reduce external effects on R2*, the R2* ratio between the medulla and cortex was also analyzed. Statistical analysis was performed with nonparametric rank tests. P < .05 was considered to indicate a significant difference. RESULTS: All patients had significantly lower medullary and cortical R2* values in the obstructed kidney (median R2* in medulla, 10.9 sec(-1) [range, 9.1-14.3 sec(-1)]; median R2* in cortex, 10.4 sec(-1) [range, 9.7-11.3 sec(-1)]) than in the nonobstructed kidney (median R2* in medulla, 17.2 sec(-1) [range, 14.6-23.2 sec(-1)], P = .005; median R2* in cortex, 11.7 sec(-1) [range, 11.0-14.0 sec(-1)], P = .005); values in the obstructed kidneys were also significantly lower than values in the kidneys of healthy control subjects (median R2* in medulla, 16.1 sec(-1) [range, 13.9-18.1 sec(-1)], P < .001; median R2* in cortex, 11.6 sec(-1) [range, 10.5-12.9 sec(-1)], P < .001). R2* ratios in the obstructed kidneys (median, 1.06; range, 0.85-1.27) were significantly lower than those in the nonobstructed kidneys (median, 1.49; range, 1.26-1.71; P = .005) and those in the kidneys of healthy control subjects (median, 1.38; range, 1.23-1.47; P < .001). In contrast, R2* ratios in the nonobstructed kidneys of patients were significantly higher than those in kidneys of healthy control subjects (P = .01). CONCLUSION: Increased oxygen content in the renal cortex and medulla occurs with acute unilateral ureteral obstruction, suggesting reduced function of the affected kidney.
Resumo:
BACKGROUND: Simultaneous pancreas/kidney transplantation (SPK) should be the procedure of choice for (pre)uremic patients with type 1 diabetes. All standard immunosuppressive protocols for SPK include a calcineurin-inhibitor. Both calcineurin inhibitors, cyclosporine (CyA) and probably tacrolimus (FK506) too, are associated with the occurrence of cholelithiasis due to their metabolic side effects. PATIENTS AND METHODS: We evaluated the prevalence of cholelithiasis in 83 kidney/pancreas transplanted type I-diabetic patients (46 males, 37 females, mean age 42.8 +/- 7.5 years) by conventional B-mode ultrasound 5 years after transplantation. 56 patients received CyA (group 1) and 27 received tacrolimus (group 2) as first-line-immunosuppressive drug. Additional immunosuppression consisted of steroids, azathioprine or mycophenolate mofetil. Additionally, laboratory analyses of cholestasis parameters (gamma-GT and alcalic phosphatasis) were performed. RESULTS: In total, 23 patients (28%) revealed gallstones and 52 patients (62%) revealed a completely normal gallbladder. In eight patients (10%) a cholecystectomy was performed before or during transplantation because of already known gallstones. No concrements in the biliary ducts (choledocholithiasis) could be detected. In group 2 the number of patients with gallstones was slightly lower (22%) compared with group 1 patients (30%), but without statistical significance. - Cholestasis parameters were not increased and HbA1c values were normal in both groups of patients. CONCLUSION: The prevalence of biliary disease in kidney/pancreas transplanted type I-diabetic patients with 28% is increased in comparison to the general population (10-15%). Lithogenicity under tacrolimus seems to be lower as under cyclosporine based immunosuppressive drug treatment. We recommend regular sonographical examinations to detect an acute or chronic cholecystis as early as possible, which may develop occultly in these patients.
Resumo:
INTRODUCTION: Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. METHODS: After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. RESULTS: Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 > or = 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. CONCLUSIONS: ET-1 may therefore be involved in mediating the response to INO.
Resumo:
BACKGROUND: In some Western countries, more and more patients seek initial treatment even for minor injuries at emergency units of hospitals. The initial evaluation and treatment as well as aftercare of these patients require large amounts of personnel and logistical resources, which are limited and costly, especially if compared to treatment by a general practitioner. In this study, we investigated whether outsourcing from our level 1 trauma center to a general practitioner has an influence on patient satisfaction and compliance. METHODS: This prospective, randomized study, included n = 100 patients who suffered from a lateral ankle ligament injury grade I-II (16, 17). After radiological exclusion of osseous lesions, the patients received early functional treatment and were shown physical therapy exercises to be done at home, without immobilization or the use of stabilizing ortheses. The patients were randomly assigned into two groups of 50 patients each: Group A (ER): Follow-up and final examination in the hospital's emergency unit. Group B (GP): Follow-up by general practitioner, final examination at hospital's emergency unit. The patients were surveyed regarding their satisfaction with the treatment and outcome of the treatment. RESULTS: Female and male patients were equally represented in both groups. The age of the patients ranged from 16 - 64 years, with a mean age of 34 years (ER) and 35 years (GP). 98% (n = 98) of all patients were satisfied with their treatment, and 93% (n = 93) were satisfied with the outcome. For these parameters no significant difference between the two groups could be noted (p = 0.7406 and 0.7631 respectively). 39% of all patients acquired stabilizing ortheses like ankle braces (Aircast, Malleoloc etc.) on their own initiative. There was a not significant tendency for more self-acquired ortheses in the group treated by general practicioners (p = 0,2669). CONCLUSION: Patients who first present at the ER with a lateral ankle ligament injury grade I-II can be referred to a general practitioner for follow-up treatment without affecting patient satisfaction regarding treatment and treatment outcome.
Resumo:
BACKGROUND: Acute epidural and subdural haematomas remain among the most common causes of mortality and disability resulting from traumatic brain injury. In the last three decades improvements in rescue, neuromonitoring and intensive care have led to better outcomes. The purpose of this study was to evaluate the impact of these strategies on outcome in patients treated in a single institution in Switzerland. METHODS: A total of 76 consecutive patients who underwent emergency craniotomy for acute traumatic epidural and subdural haematoma at University Hospital Bern between January 2000 and December 2003 were included in this study. RESULTS: Thirty-seven patients presented with an epidural haematoma and 46 with a subdural haematoma. In seven patients both haematomas could be documented. The median age was 54 years (IQR 28). The median initial GCS score was 7 (IQR 6). The median time from primary injury to surgery was 3 hours (IQR 2.5 hours). The median stay in the ICU was 3 days (IQR: 3 days). The outcome was favourable (GOS 4 and 5) in 43 patients (57%). Thirteen patients (17%) remained severely or moderately disabled (GOS 3). Finally, a total of 21 patients (28%) died or remained in a persistent vegetative state (GOS 1 and 2). Mortality was 41% for acute subdural haematoma (19/46) and 3% (1/37) for patients with epidural haematoma. Only age, GCS at admission and pupil abnormalities seemed to be associated with outcome. Time to surgery was not. CONCLUSION: In patients admitted with acute traumatic epidural and subdural haematomas that are treated within a median of 3 hours after primary injury, factors such as age, initial GCS and pupil abnormalities still appear to be the most important factors correlating with outcome.
Resumo:
BACKGROUND AND PURPOSE: Current knowledge of long-term outcome in patients with acute spinal cord ischemia syndrome (ASCIS) is based on few studies with small sample sizes and <2 years' follow-up. Therefore, we analyzed clinical features and outcome of all types of ASCIS to define predictors of recovery. METHODS: From January 1990 through October 2002, 57 patients with ASCIS were admitted to our center. Follow-up data were available for 54. Neurological syndrome and initial degree of impairment were defined according to American Spinal Injury Association (ASIA)/International Medical Society of Paraplegia criteria. Functional outcome was assessed by walking ability and bladder control. RESULTS: Mean age was 59.4 years; 29 were women; and mean follow-up was 4.5 years. The origin was atherosclerosis in 33.3%, aortic pathology in 15.8%, degenerative spine disease in 15.8%, cardiac embolism in 3.5%, systemic hypotension in 1.8%, epidural anesthesia in 1.8%, and cryptogenic in 28%. The initial motor deficit was severe in 30% (ASIA grades A and B), moderate in 28% (ASIA C), and mild in 42% (ASIA D). At follow-up, 41% had regained full walking ability, 30% were able to walk with aids, 20% were wheelchair bound, and 9% had died. Severe initial impairment (ASIA A and B) and female sex were independent predictors of unfavorable outcome (P=0.012 and P=0.043). CONCLUSIONS: Considering a broad spectrum of clinical presentations and origins, the outcome in our study was more favorable than in previous studies reporting on ASCIS subgroups with more severe initial deficits.
Resumo:
BACKGROUND. The high rate of reperfusion injury in clinical lung transplantation mandates significant improvements in lung preservation. Innovations should be validated using standardized and low-cost experimental models. METHODS. The model introduced here is analyzed by comparing global lung function after varying ischemic times (2, 4, 8, 16, and 24 hours). A rat double-lung block is flush-perfused, and the main pulmonary artery and left atrium are connected to the left pulmonary artery and vein of a syngeneic recipient using a T-shaped stent. With pressure side ports and incorporated flow crystals, measurement of vascular resistance and graft oxygenation can be performed. The transplant is ventilated separately, and compliance and resistance are determined. RESULTS. The increase in the ischemic interval from 2 to 24 hours caused an increase in the alveolar arterial oxygen difference from 220 +/- 20 to 600 +/- 34 mm Hg, pulmonary vascular resistance from 198 +/- 76 to 638 +/- 212 mm Hg.mL-1.min-1, and resistance to airflow from 274 +/- 50 to 712 +/- 30 cm H2O/L H2O, and a decrease in pulmonary compliance from 0.4 +/- 0.05 to 0.12 +/- 0.06 mL/cm H2O. CONCLUSIONS. This in situ, syngeneic rat lung transplantation model offers an alternative to large animal models for verification of lung preservation solutions and for modification of donor or recipient treatment regimens.
Resumo:
Donor-specific transfusions (DST) induce allograft tolerance in animals. Evidence is growing that FoxP3+ regulatory T cells are associated with tolerance in humans. Forty-four biopsies from 69 living donor kidney transplant recipients (LDT) after DST, 53 biopsies from 69 matched deceased donor transplant recipients (DDT), obtained for graft dysfunction, and 12 biopsies from LDT without DST were retrospectively analyzed. FoxP3 positivity was more frequent in LDT/DST than in DDT biopsies (67% vs. 44%, P=0.02). Considering only biopsies with acute rejection, FoxP3 positivity was observed in 92% (11/12) after LDT/DST, but only in 50% (6/12) after DDT (P=0.03). The number of FoxP3+ T cells per total infiltrating cells in rejection biopsies was higher (P<0.05) from LDT/DST (4.1%) than from DDT or LDT (2.6%) without DST (2.5%). Six-year graft survival was better in patients with LDT/DST than with DDT (87.5% vs. 79.7%, P=0.04). The present investigation demonstrates an association between DST and FoxP3+ T cells. The effect of DST on regulatory T cells deserves further analysis in transplantation.
Resumo:
BACKGROUND: Currently, only anecdotal information exists on the presentation and outcome of coronary arterial injury after ablation procedures. METHODS AND RESULTS: Four patients who sustained coronary artery injury of a cohort of patients undergoing 4655 consecutive ablation procedures (0.09%) are described. The patients' mean age was 45+/-11 years, and 1.8+/-0.5 prior ablation attempts had been unsuccessful. Coronary injury occurred from epicardial ventricular tachycardia ablation in 2 patients (irrigated radiofrequency ablation in one and cryoablation in the other) and ablation within the middle cardiac vein with irrigated radiofrequency in 2 patients. All involved branches of the right coronary artery. Acute occlusion presenting with ST-segment elevation immediately after ablation was recognized during the procedure in 2 cases. Occlusion failed to respond to nitroglycerin or balloon dilation, and stenting was required in both cases. Acute myocardial infarction occurred 2 weeks after epicardial ablation as a result of occlusion of a right ventricular branch of the right coronary artery giving rise to the posterior descending coronary artery in 1 patient. A moderate asymptomatic stenosis was seen on angiography after epicardial cryoablation in 1 patient. All patients recovered and remained asymptomatic from the coronary injury and arrhythmias during 37+/-53 months of follow-up. CONCLUSIONS: Coronary arterial injury after ablation procedures is rare. It may present acutely or several weeks after an ablation procedure. Acute occlusion appears to require coronary stenting. Unanticipated anatomic variations can predispose to coronary injury.
Resumo:
AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.
Resumo:
PURPOSE: To prospectively assess the potential of noninvasive diffusion-weighted magnetic resonance (MR) imaging to depict changes in microperfusion and diffusion in patients with acute unilateral ureteral obstruction. MATERIALS AND METHODS: The local ethics committee approved the study protocol. Informed consent was obtained. Diffusion-weighted MR imaging was performed in 21 patients (two women, 19 men; mean age, 43 years +/- 10 [standard deviation]) with acute unilateral ureteral obstruction due to a calculus diagnosed at unenhanced computed tomography. A control group (one woman, 15 men; mean age, 44 years +/- 12) underwent the same MR protocol. Standard processing yielded an apparent diffusion coefficient (ADC) ADCT; the separation of microperfusion and diffusion contributions yielded the perfusion fraction FP and the pure diffusion coefficient ADCD. ADCT, ADCD, and FP were compared between obstructed and contralateral unobstructed kidneys and with control values. For statistical analysis, nonparametric rank tests were used. A P value of less than .05 was considered significant. RESULTS: No significant differences were observed between the ADCT of the medulla or cortex of the obstructed and unobstructed kidneys. Compared with control kidneys, only medullary ADCT was slightly increased in the obstructed kidney (P < .04). However, the ADCD in the medulla of the obstructed and unobstructed kidneys was significantly higher than that in control subjects (201 x 10(-5) mm2/sec +/- 16 and 199 x 10(-5) mm2/sec +/- 20 vs 189 x 10(-5) mm2/sec +/- 12; P < .008 and P < .03, respectively). FP of the cortex of the obstructed kidney was significantly lower than that in the unobstructed kidney (20.2% +/- 4.8 vs 24.0% +/- 5.8; P < .002); FP of the medulla was slightly lower in the obstructed kidney than in the unobstructed kidney (18.3% +/- 5.9 vs 20.7% +/- 6.4; P = .05). CONCLUSION: Diffusion-weighted MR imaging allows noninvasive detection of changes in renal perfusion and diffusion during acute unilateral ureteral obstruction, as exemplified in patients with a ureteral calculus.
Resumo:
BACKGROUND: Volume resuscitation is one of the primary therapeutic goals in hemorrhagic shock, but data on microcirculatory effects of different colloidal fluid resuscitation regimen are sparse. We investigated sublingual mucosal microcirculatory parameters during hemorrhage and after fluid resuscitation with gelatin, hydroxyethyl starch, or hypertonic saline and hydroxyethyl starch in pigs. METHODS: To induce hemorrhagic shock, 60% of calculated blood volume was withdrawn. Microvascular blood flow was assessed by laser Doppler velocimetry. Microcirculatory hemoglobin oxygen saturation was measured with a tissue reflectance spectrophotometry, and side darkfield imaging was used to visualize the microcirculation and to quantify the flow quality. Systemic hemodynamic variables, systemic acid base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline, after hemorrhage, and after fluid resuscitation with a fixed volume regimen. RESULTS: Systemic hemodynamic parameters returned or even exceeded to baseline values in all three groups after fluid resuscitation, but showed significantly higher filling pressures and cardiac output values in animals treated with isotonic colloids. Microcirculatory parameters determined in gelatin and hydroxyethyl starch resuscitated animals, and almost all parameters except microvascular hemoglobin oxygen saturation in animals treated with hypertonic saline and hydroxyethyl starch, were restored after treatment. DISCUSSION: Hemorrhaged pigs can be hemodynamically stabilized with either isotonic or hypertonic colloidal fluids. The main finding is an adequate restoration of sublingual microcirculatory blood flow and flow quality in all three study groups, but only gelatin and hydroxyethyl starch improved microvascular hemoglobin oxygen saturation, indicating some inadequate oxygen supply/demand ratio maybe due to a better restoration of systemic hemodynamics in isotonic colloidal resuscitated animals.
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
Resumo:
Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.