914 resultados para Acceleration
Resumo:
We examine the recently found equivalence for the response of a static scalar source interacting with a massless Klein-Gordon field when the source is (i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the Hawking radiation, and (ii) uniformly accelerated in Minkowski spacetime, in the inertial vacuum, provided that the source's proper acceleration is the same in both cases. It is shown that this equivalence is broken when the massless Klein-Gordon field is replaced by a massive one.
Resumo:
VAMP (variable-mass particle) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.
Resumo:
We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.
Resumo:
It was shown recently that in four dimensions scalar sources with fixed proper acceleration minimally coupled to a massless Klein-Gordon field lead to the same responses when they are (i) uniformly accelerated in Minkowski spacetime (in the inertial vacuum) and (ii) static in the Schwarzschild spacetime (in the Unruh vacuum). Here we show that this equivalence is broken if the spacetime dimension is more than four.
Resumo:
Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling delta between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w(DE)(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w(DE) and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Para avaliar o comportamento da suspensão do pulverizador autopropelido, foram desenvolvidos modelos físicos e matemáticos em função da excitação ocasionada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de meio veículo. As simulações numéricas são executadas nos softwares Matlab® e Simulink®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas quatro diferentes configurações do sistema, variando-se a relação de rigidez a partir de um modelo considerado padrão. Constatou-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança.
Resumo:
Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent 1 is observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.