971 resultados para Ab initio electronic structure
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
Ab initio total energy calculations within the density functional theory framework have been used to study the adsorption of CH2 and H as well as the coadsorption of CH2 and H on Ni(111). H binds strongly at threefold hollow sites with calculated adsorption energies of 2.60 and 2.54 eV at the face-centered-cubic (fcc) and hexagonal-close-packed (hcp) hollow sites, respectively. Adsorption energies and H-Ni distances are found to agree well with both experimental and theoretical results. CH2 adsorbs strongly at all high symmetry sites with calculated adsorption energies of 3.26, 3.22, 3.14 and 2.36 eV at the fcc, hcp, bridge and top sites, respectively. Optimized structures are reported at all sites, and, in the most stable hollow sites there is considerable internal reorganization of the CH2 fragment. The CH2 molecule is tilted, the hydrogens are inequivalent and the C-H bonds are lengthened relative to the gas phase. In the CH2-H coadsorption systems the adsorbates have a tendency to move toward bridge sites. The bonding of all adsorbates to the surface is analyzed in detail. (C) 2000 American Institute of Physics. [S0021-9606(00)71213-X].
Site symmetry dependence of repulsive interactions between chemisorbed oxygen atoms on Pt{100}-(1x1)
Resumo:
Ab initio total energy calculations using density functional theory with the generalized gradient approximation have been performed for the chemisorption of oxygen atoms on a Pt{100}-(1 x 1) slab. Binding energies for the adsorption of oxygen on different high-symmetry sites are presented. The bridge site is the most stable at a coverage of 0.5 ML, followed by the fourfold hollow site. The atop site is the least stable. This finding is rationalized by analyzing the ''local structures'' formed upon oxygen chemisorption. The binding energies and heats of adsorption at different oxygen coverages show that pairwise repulsive interactions are considerably stronger between oxygen atoms occupying fourfold sites than those occupying bridge sites. Analysis of the partial charge densities associated with Bloch states demonstrates that the O-Pt bond is considerably more localized at the bridge site. These effects cause a sharp drop in the heats of adsorption for oxygen on hollow sites when the coverage is increased from 0.25 to 0.5 ML. Mixing between oxygen p orbitals and Pt d orbitals can be observed over the whole metal d-band energy range.
Resumo:
We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.
Resumo:
We present the first calculation of fine-structure photoionization cross sections for the ground state of singly ionized Fe. These large-scale ab initio calculations, limited to the near-threshold region, were performed in the close-coupling approximation using a Dirac–Coulomb R -matrix method implemented within a modified version of the DARC package. Our calculated cross sections reproduce in detail the resonance structures observed in previous experimental determinations.
Resumo:
Ab initio electron scattering calculations using the R -matrix approach have been performed for within a three-state valence configuration-interaction model (VCI). The lowest three electronic target states ( , and the ) of this molecular nitrogen cation are included in the close-coupling method, with each state being represented by a valence CI approximation. From a detailed analysis of the resonance structure found in our work for the symmetries we find four prominent Rydberg series of the type , , , and a interloper resonance. This interloper molecular resonance associated with the B state of is seen to cause distortions of the resulting resonance spectra. A comparison of our total cross sections for the X - B transition shows excellent agreement with the available experimental data.
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.
Resumo:
FRANCAIS: L'observation d'une intense luminescence dans les super-réseaux de Si/SiO2 a ouvert de nouvelles avenues en recherche théorique des matériaux à base de silicium, pour des applications éventuelles en optoélectronique. Le silicium dans sa phase cristalline possède un gap indirect, le rendant ainsi moins intéressant vis-à-vis d'autres matériaux luminescents. Concevoir des matériaux luminescents à base de silicium ouvrira donc la voie sur de multiples applications. Ce travail fait état de trois contributions au domaine. Premièrement, différents modèles de super-réseaux de Si/SiO2 ont été conçus et étudiés à l'aide de calculs ab initio afin d'en évaluer les propriétés structurales, électroniques et optiques. Les deux premiers modèles dérivés des structures cristallines du silicium et du dioxyde de silicium ont permis de démontrer l'importance du rôle de l'interface Si/SiO2 sur les propriétés optiques. De nouveaux modèles structurellement relaxés ont alors été construits afin de mieux caractériser les interfaces et ainsi mieux évaluer la portée du confinement sur les propriétés optiques. Deuxièmement, un gap direct dans les modèles structurellement relaxés a été obtenu. Le calcul de l'absorption (par l'application de la règle d'or de Fermi) a permis de confirmer que les propriétés d'absorption (et d'émission) du silicium cristallin sont améliorées lorsque celui-ci est confiné par le SiO2. Un décalage vers le bleu avec accroissement du confinement a aussi été observé. Une étude détaillée du rôle des atomes sous-oxydés aux interfaces a de plus été menée. Ces atomes ont le double effet d'accroître légèrement le gap d'énergie et d'aplanir la structure électronique près du niveau de Fermi. Troisièmement, une application directe de la théorique des transitions de Slater, une approche issue de la théorie de la fonctionnelle de la densité pour des ensembles, a été déterminée pour le silicium cristallin puis comparée aux mesures d'absorption par rayons X. Une très bonne correspondance entre cette théorie et l'expérience est observée. Ces calculs ont été appliqués aux super-réseaux afin d'estimer et caractériser leurs propriétés électroniques dans la zone de confinement, dans les bandes de conduction.
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
The structural saturation and stability, the energy gap, and the density of states of a series of small, silicon-based clusters have been studied by means of the PM3 and some ab initio (HF/6-31G* and 6-311++G**, CIS/6-31G* and MP2/6-31G*) calculations. It is shown that in order to maintain a stable nanometric and tetrahedral silicon crystallite and remove the gap states, the saturation atom or species such as H, F, Cl, OH, O, or N is necessary, and that both the cluster size and the surface species affect the energetic distribution of the density of states. This research suggests that the visible luminescence in the silicon-based nanostructured material essentially arises from the nanometric and crystalline silicon domains but is affected and protected by the surface species, and we have thus linked most of the proposed mechanisms of luminescence for the porous silicon, e.g., the quantum confinement effect due to the cluster size and the effect of Si-based surface complexes.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.
Resumo:
CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.