925 resultados para ARABIDOPSIS COP9
Resumo:
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.
Resumo:
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.
Resumo:
Asteraceae or Compositae constitute one of the largest families of the angiosperms, distributed over all continents but in Antarctica, particularly well represented in temperate zones and less frequent in tropical regions. The Asteraceae have been the object of a great deal of attention from all viewpoints for their scientific as well as economic interest. Telomeres sequences are highly conservated at the ends of chromosomes across the eukaryotes. In plants, generally are formed by tandemly repeated sequences named Arabidopsis type but several exceptions have been described. The objective of the present work is to study the telomeric characterization along the whole Asteraceae family and to find, if any, the relationships between these results and the evolutionary history in this family.
Resumo:
The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.
Resumo:
Similar to animal hormones, classic plant hormones are small organic molecules that regulate physiological and developmental processes. In development, this often involves the regulation of growth through the control of cell size or division. The plant hormones auxin and brassinosteroid modulate both cell expansion and proliferation and are known for their overlapping activities in physiological assays. Recent molecular genetic analyses in the model plant Arabidopsis suggest that this reflects interdependent and often synergistic action of the two hormone pathways. Such pathway interactions probably occur through the combinatorial regulation of common target genes by auxin- and brassinosteroid-controlled transcription factors. Moreover, auxin and brassinosteroid signaling and biosynthesis and auxin transport might be linked by an emerging upstream connection involving calcium-calmodulin and phosphoinositide signaling.
Resumo:
Cell separation, or abscission, is a highly specialized process in plants that facilitates remodeling of their architecture and reproductive success. Because few genes are known to be essential for organ abscission, we conducted a screen for mutations that alter floral organ shedding in Arabidopsis. Nine recessive mutations that block shedding were found to disrupt the function of an ADP-ribosylation factor-GTPase-activating protein (ARF-GAP) we have named NEVERSHED (NEV). As predicted by its homology to the yeast Age2 ARF-GAP and transcriptional profile, NEV influences other aspects of plant development, including fruit growth. Co-localization experiments carried out with NEV-specific antiserum and a set of plant endomembrane markers revealed that NEV localizes to the trans-Golgi network and endosomes in Arabidopsis root epidermal cells. Interestingly, transmission electron micrographs of abscission zone regions from wild-type and nev flowers reveal defects in the structure of the Golgi apparatus and extensive accumulation of vesicles adjacent to the cell walls. Our results suggest that NEV ARF-GAP activity at the trans-Golgi network and distinct endosomal compartments is required for the proper trafficking of cargo molecules required for cell separation.
Resumo:
The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (<2.5ppm for all measured compounds), better spectral accuracy was recorded on the Q-TOF. Taken together, our results demonstrate that comparable performances can be obtained at acquisition frequencies compatible with UHPLC on Q-TOF and Exactive Plus MS, which may thus be equivalently used for plant metabolomics.
Resumo:
The ability to withstand environmental temperature variation is essential for plant survival. Former studies in Arabidopsis revealed that light signalling pathways had a potentially unique role in shielding plant growth and development from seasonal and daily fluctuations in temperature. In this paper we describe the molecular circuitry through which the light receptors cry1 and phyB buffer the impact of warm ambient temperatures. We show that the light signalling component HFR1 acts to minimise the potentially devastating effects of elevated temperature on plant physiology. Light is known to stabilise levels of HFR1 protein by suppressing proteasome-mediated destruction of HFR1. We demonstrate that light-dependent accumulation and activity of HFR1 are highly temperature dependent. The increased potency of HFR1 at warmer temperatures provides an important restraint on PIF4 that drives elongation growth. We show that warm ambient temperatures promote the accumulation of phosphorylated PIF4. However, repression of PIF4 activity by phyB and cry1 (via HFR1) is critical for controlling growth and maintaining physiology as temperatures rise. Loss of this light-mediated restraint has severe consequences for adult plants which have greatly reduced biomass.
Resumo:
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Resumo:
Phosphate homeostasis was studied in a monocotyledonous model plant through the characterization of the PHO1 gene family in rice (Oryza sativa). Bioinformatics and phylogenetic analysis showed that the rice genome has three PHO1 homologs, which cluster with the Arabidopsis (Arabidopsis thaliana) AtPHO1 and AtPHO1;H1, the only two genes known to be involved in root-to-shoot transfer of phosphate. In contrast to the Arabidopsis PHO1 gene family, all three rice PHO1 genes have a cis-natural antisense transcript located at the 5 ' end of the genes. Strand-specific quantitative reverse transcription-PCR analyses revealed distinct patterns of expression for sense and antisense transcripts for all three genes, both at the level of tissue expression and in response to nutrient stress. The most abundantly expressed gene was OsPHO1;2 in the roots, for both sense and antisense transcripts. However, while the OsPHO1;2 sense transcript was relatively stable under various nutrient deficiencies, the antisense transcript was highly induced by inorganic phosphate (Pi) deficiency. Characterization of Ospho1;1 and Ospho1;2 insertion mutants revealed that only Ospho1;2 mutants had defects in Pi homeostasis, namely strong reduction in Pi transfer from root to shoot, which was accompanied by low-shoot and high-root Pi. Our data identify OsPHO1;2 as playing a key role in the transfer of Pi from roots to shoots in rice, and indicate that this gene could be regulated by its cis-natural antisense transcripts. Furthermore, phylogenetic analysis of PHO1 homologs in monocotyledons and dicotyledons revealed the emergence of a distinct clade of PHO1 genes in dicotyledons, which include members having roles other than long-distance Pi transport.
Resumo:
Polar transport of the signaling molecule auxin is critical for plant development and depends on both the polar distribution of auxin efflux carriers, which pump auxin out of the cell and the alignment of these polarized cells. Two papers in this issue of Cell (Michniewicz et al., 2007; Jaillais et al., 2007) address how polar transport of these carriers occurs and describe the endosomal pathways involved.
Resumo:
Résumé Etant une importante source d'énergie, les plantes sont constamment attaquées par des pathogènes. Ne pouvant se mouvoir, elles ont développé des systèmes de défense sophistiqués afin de lutter contre ces prédateurs. Parmi ces systèmes, les voies de signalisation mettant en jeu des éliciteurs endog8nes tels que les jasmonates permettent d'induire la production de protéines de défense telles que les protéines dites "liées à la pathogénèse". Les gènes codant pour ces protéines appartiennent à des familles multigéniques. Le premier but de cette thèse est d'évaluer le nombre de ces gènes dans le génome d'Arabidopsis thaliana et d'estimer la part de ce système de défense, dépendant de la voie de signalisation des jasmonates. Nous avons défini un cluster de seulement 1S gènes sur 266, "liés à la pathogénèse", exclusivement régulés par les jasmonates. De multiples membres des familles des lectines de type jacaline et des inhibiteurs de trypsines semblent dépendre du jasmonate. Présente dans tous les systèmes immunitaires des eucaryotes, la famille des défensines est une famille très intéressante. Chez Arabidopsis thaliana, 317 protéines similaires aux défensines ont été définies, cependant seulement 15 défensines (PDF) sont bien annotées. Ces 15 défensines sont séparées en deux groupes dont un semble avoir évolué plus récemment. Le second but de cette thèse est d'étudier ce groupe de défensines à l'aide de la bioinformatique et des techniques de biologie moléculaire (gêne rapporteur, PCR en temps réel). Nous avons montré que ce groupe contenait une défensine acide intéressante, PDF1.5, qui semblait avoir subi une sélection positive. Cette protéine n'avait encore jamais été étudiée. Contrairement à ce que nous pensions, nous avons établi que cette protéine pouvait avoir une activité biologique liée à la défense. Ce travail de thèse a permis de préciser le nombre de gènes "liées à la pathogénèse" induits par la voie des jasmonates et d'apporter des éléments de réponse sur la question de la redondance des gènes de défense. En conclusion, même si de nombreuses familles de gènes intervenant dans la défense sont bien définies chez Arabidopsis, il reste encore de nombreuses études à faire sur chacun de ces membres. Abstract Being an important source of energy, plants are constantly attacked by herbivores and pathogens. As sessile organisms, they have developed sophisticated defense responses to cope with attack. Among these responses, signalling pathways, using endogenous elicitors including jasmonates (JA), allow the plant to induce the production of defense proteins such as pathogenesis-related (PR) proteins. The genes encoding these proteins belong to multigenic families. The first goal of this thesis was to evaluate the number of PR genes in the genome of Arabidopsis thaliana and estimate how much of this plant defense system was dependent on the jasmonate signaling pathway in leaves. Surprisingly a cluster of only 1S genes out of 2ó6 PR genes was exclusively regulated by JA. Multiple members of the jacalin lectin and trypsin inhibitor gene families were shown to be regulated by JA. Present in all eukaryotic immune systems, defensins are an attractive PR family to study. In Arabidopsis thaliana, 317 defensin-related proteins have been found but just 1S defensins (i.e. PDF family) are well annotated. These defensins are split into 2 groups. One of these groups may have appeared and diversified recently. The second goal of this thesis was to study this defensin gene group combining bioinformatic, reporter gene and quantitative PCR techniques. We have shown that this group contains an interesting acidic defensin, PDF1.S, which seems to have undergone positive selection. No information was known on this protein. We have established that this protein may have a biological activity in plant defense. This thesis allowed us to define the number of PR genes induced by the jasmonate pathway and gave initial leads to explain the redundancy of the PR genes in the genome of Arabidopsis. In conclusion, even if many defense gene families are already defined in the Arabidopsis genome, much work remains to be done on individual members.
Resumo:
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells.
Resumo:
The Arabidopsis opr3 mutant is defective in the isoform of 12-oxo-phytodienoate (OPDA) reductase required for jasmonic acid (JA) biosynthesis. Oxylipin signatures of wounded opr3 leaves revealed the absence of detectable 3R,7S-JA as well as altered levels of its cyclopentenone precursors OPDA and dinor OPDA. In contrast to JA-insensitive coi1 plants and to the fad3 fad7 fad8 mutant lacking the fatty acid precursors of JA synthesis, opr3 plants exhibited strong resistance to the dipteran Bradysia impatiens and the fungus Alternaria brassicicola. Analysis of transcript profiles in opr3 showed the wound induction of genes previously known to be JA-dependent, suggesting that cyclopentenones could fulfill some JA roles in vivo. Treating opr3 plants with exogenous OPDA powerfully up-regulated several genes and disclosed two distinct downstream signal pathways, one through COI1, the other via an electrophile effect of the cyclopentenones. We conclude that the jasmonate family cyclopentenone OPDA (most likely together with dinor OPDA) regulates gene expression in concert with JA to fine-tune the expression of defense genes. More generally, resistance to insect and fungal attack can be observed in the absence of JA.