927 resultados para AMORPHOUS DIBLOCK COPOLYMER
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Física
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
Tese de Doutoramento (Programa doutoral em Engenharia de Materiais)
Resumo:
Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano âgalvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against S.epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive \OCP\ value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 hours, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.
Resumo:
PhD in Sciences Specialty in Physics
Resumo:
This thesis details the findings of a study into the spatial distribution and speciation of 238U, 226Ra and 228Ra in the soils of the Cronamuck valley, County Donegal . The region lies on the north-eastern edge of the Barnesmore granite and has been the subject of uranium prospecting efforts in the past. The results of the project provide information on the practicability of geostatistical techniques as a means of estimating the spatial distribution of natural radionuclides and provide insight into the behaviour of these nuclides and their modes of occurrence and enrichment in an upland bog environment. The results of the geostatistical survey conducted on the area indicate that the primary control over the levels of the studied nuclides in the soil of the valley is the underlying geology. Isopleth maps of nuclide levels in the valley indicate a predominance of elevated nuclide levels in the samples drawn from the granite region, statistical analysis of the data indicating that levels of the nuclides in samples drawn from the granite are greater than levels drawn from the non-granite region by up to a factor of 4.6 for 238U and 4.9 for 226Ra. Redistribution of the nuclides occurs via drainage systems within the valley, this process being responsible for transport of nuclides away from the granite region resulting in enrichment of nuclides in soils not underlain by the granite. Distribution of the nuclides within the valley is erratic, the effect of drainage f lows on the nuclides resulting in localized enriched areas within the valley. Speciation of the nuclides within one of the enriched areas encountered in the study indicates that enrichment is as a result of saturation of the soil with drainage water containing trace amounts of radionuclides. 238U is primarily held within the labile fractions (exchangeable cat ions + easily oxidisable organics + amorphous iron oxides ) of the soil , 226Ra being associated with the non- labile fractions, most probably the resistant organic material. 228Ra displays a significant occurrence in both the labile and non- labile fractions. The ability of the soil to retain uranium appears to be affected largely by the redox status of the soil, samples drawn from oxidizing environments tending to have little or no uranium in the easily oxidisable and amorphous iron oxide fractions. This loss of uranium from oxidised soil samples is responsible for the elevated 226Ra /238U disequilibrium encountered in the enriched areas of the valley. Analysis of the data indicates that samples displaying elevated 226Ra/238U ratios also exhibit elevated 228Ra/238U ratios indicating a loss of uranium from the samples as opposed to an enrichment of 226Ra.
Resumo:
A detailed preliminary histological analysis of Helobdella hyalina Ringuelet, 1942 male system from Los Talas, Buenos Aires, Argentina is described. Six pairs of testisacs, located between the crop caeca, form the male reproductive system. Each testisac is clothed by the mesotelium. Inside it, the germinal cells are connected to the citophore and develop functional unit called poliplast. The spermatozoa are released into testisacs after the reabsortion of the citophore. Five stages of spermatogenesis are described taking into account the successive maturation stages of germinal cells and the changes in the citophore size. Lining cells and gland cells were found in the seminal vesicle. Five different types of gland cells are placed inside the ejaculatory ducts, as well as two kinds of cells are found in its distal portion: type 1, which produces eosinophilic granular secretion, type 2, with amorphous and slightly eosinophilic. Three distinct gland cells are located in the proximal portion of the duct: type 3, which produces a strongly eosinophilic granular secretion; type 4, with a negative eosinophilic amorphous secretion and type 5, with a basophilic granular secretion. Type 5 gland cells are described for the ducts of this species only.
Resumo:
The gut contents of nine genera of benthic Chironominae and Tanypodinae from the Middle Paraná River floodplain habitats (a lake and a secondary channel) were analyzed to determine their feeding patterns and functional feeding groups. Amorphous detritus, animal and vegetal tissues, and mineral materials (predominantly sand) were observed in the larval guts. Amorphous detritus were the main food item found for Polypedilum (Tripodura) sp., Chironomus gr. decorus sp., Endotribelos sp., Phaenopsectra sp., Cladopelma sp., and Pelomus sp. (Chironominae), while animal tissues (mainly oligochaetes) were the most important food item found for Ablabesmyia (Karelia) sp., Coelotanypus sp., and Procladius sp. (Tanypodinae). Dietary overlap was calculated for all pairs of genera. Within predators, the highest overlap was obtained between Coelotanypus sp. and Ablabesmyia (Karelia) sp., while within detritivores the highest niche overlap was obtained between Endotribelos sp. and Phaenopsectra sp.
Resumo:
Increasing greenhouse light transmission has a positive effect not only in Northern latitudes but in Mediterranean countries as well. A greenhouse, H2, with a tetrafluoroethylene copolymer 60 microns film, (Asahi Glass company, Aflex) characterised by its high light transmission and durability was compared to another greenhouse with a co-extruded film considered as a control, H1. Tomato crop response to the increase in light during winter and summer with high temperature and light was evaluated. Light transmission in H2 remained very high in spite of the observed dust accumulation and the low angle of incidence of the winter solar radiation. Transmissivity was clearly higher for H2 (81 to 83 % throughout the season) than in the control (around 63 %). The rest of the climatic parameters were similar in both greenhouses, either in the winter or in the summer evaluations. In spite of the high solar radiation in H2, the summer temperature could be maintained at the desired levels by using evaporative cooling. Accumulated tomato yield and quality was better in the H2 greenhouse (15 % more for the winter crop and 27% more for the summer crop). Fruit size was bigger in the winter crop. As an overall conclusion, the use of high light transmissive films in Mediterranean areas is very convenient for many vegetable crops. This is valid not only in winter but in summer, provided the greenhouse has good ventilation or evaporative cooling to overcome the increase in sensible heat caused by this increase in light..
Resumo:
Amorphous material and altered collagen fragments within dilated secretory vesicles and cisternae of fibroblast cytoplasm were the main ultrastructural changes seen in hepatic periovular granulomas formed in mice infected with Schistosoma mansoni and treated with colchicine. Despite promoting ultrastructural changes in the fibroblasts found in hepatic periovular granulomas, colchicine administration to infected mice did not significantly change the light microscopic appearance of the hepatic schistosomal lesions, did not diminish the amount of total hepatic collagen, and did not change the collagen isotypes in the granulomas, as observed after a comparative study with non-colchicine treated infected control mice. When administered to mice two weeks after curative treatment of schistosomiasis with praziquantel, colchicine did not seem to increase extracellular collagen degradation or to induce a more rapid resorption of hepatic periovular granulomas, although still promoting ultrastructura alterations in fibroblasts.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.
Resumo:
Due to the eye's specific anatomical and physiological conformation, the treatment of eye diseases is a real challenge for pharmaceutical therapy. The presence of efficient protective barriers (i.e., the conjunctival and corneal membranes) and protective mechanisms (i.e., blinking and nasolachrymal drainage) makes this organ particularly impervious to local drug therapy. To overcome these issues, numerous strategies have been envisioned using pharmaceutical technology. Many formulations currently on the market or still under development are emulsions or colloidal systems intended to enhance precorneal residence time and corneal penetration, causing a consequent increase in drug bioavailability after instillation. After a review of some recent developments in the field of cyclosporin A formulations for the eye, a novel micellar formulation of cyclosporine A based on a diblock methoxy-poly(ethylene glycol)-hexysubstituted poly(lactides) (MPEG-hexPLA) is described.