957 resultados para AMINO-ACID SUBSTITUTION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Free amino acids (AAs) in human plasma are derivatized with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) and analyzed by capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The labeling procedure is significantly improved over results reported previously. Derivatization can be completed in 40 min, with concentrations as low as 4 x 10(-8) M successfully labeled in favourable cases. Twenty-nine AAs (including 2 internal standards) are identified and can be reproducibly separated in 70 min. Migration time RSD values for 23 of these AAs were calculated and found in the range from 0.5 to 4%. The rapid derivatization procedure and the resolution obtained in the separation are sufficient for a semi-quantitative, emergency diagnosis of several inborn errors of metabolism (IEM). Amino acid profiles for both normal donor plasma samples and plasma samples of patients suffering from phenylketonuria, tyrosinemia, maple syrup urinary disease, hyperornithinemia, and citrullinemia are studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytotoxic T cells (CTL) recognize short peptides that are derived from the proteolysis of endogenous cellular proteins and presented on the cell surface as a complex with MHC class I molecules. CTL can recognize single amino acid substitutions in proteins, including those involved in malignant transformation. The mutated sequence of an oncogene may be presented on the cell surface as a peptide, and thus represents a potential target antigen for tumour therapy. The p21ras gene is mutated in a wide variety of tumours and since the transforming mutations result in amino acid substitutions at positions 12, 13 and 61 of the protein, a limited number of ras peptides could potentially be used in the treatment of a wide variety of malignancies. A common substitution is Val for Gly at position 12 of p21ras. In this study, we show that the peptide sequence from position 5 to position 14 with Val at position 12-ras p5-14 (Val-12)-has a motif which allows it to bind to HLA-A2.1. HLA-A2.1-restricted ras p5-14 (Val-12)-specific CTL were induced in mice transgenic for both HLA-A2.1 and human beta2-microglobulin after in vivo priming with the peptide. The murine CTL could recognize the ras p5-14 (Val-12) peptide when they were presented on both murine and human target cells bearing HLA-A2.1. No cross-reactivity was observed with the native peptide ras p5-14 (Gly-12), and this peptide was not immunogenic in HLA-A2.1 transgenic mice. This represents an interesting model for the study of an HLA-restricted CD8 cytotoxic T cell response to a defined tumour antigen in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schneider's Drosophila medium, a complex amino acid rich medium was tested alone and with seven different sugars for some aspects of the biology of Lutzomyia longipalpis. Statistically significant results were obtained when sucrose was used alone, indicating that among the sugars tested, this is still the most suitable and practical one for the maintenance of L. longipalpis colonies. However, the addition of Schneider's medium to a pool of different sugars, was suggested to be related with the acceptance of the first and second blood meals and to longevity, these being, obviously, quite relevant aspects when tansmission experiments are contemplated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To study the role of CD8 beta in T cell function, we derived a CD8 alpha/beta-(CD8-/-) T cell hybridoma of the H-2Kd-restricted N9 cytotoxic T lymphocyte clone specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260. This hybridoma was transfected either with CD8 alpha alone or together with CD8 beta. All three hybridomas released interleukin 2 upon incubation with L cells expressing Kd-peptide derivative complexes, though CD8 alpha/beta cells did so more efficiently than CD8 alpha/alpha and especially CD8-/- cells. More strikingly, only CD8 alpha/beta cells were able to recognize a weak agonist peptide derivative variant. This recognition was abolished by Fab' fragments of the anti-Kd alpha 3 monoclonal antibody SF1-1.1.1 or substitution of Kd D-227 with K, both conditions known to impair CD8 coreceptor function. T cell receptor (TCR) photoaffinity labeling indicated that TCR-ligand binding on CD8 alpha/beta cells was approximately 5- and 20-fold more avid than on CD8 alpha/a and CD8-/- cells, respectively. SF1-1.1.1 Fab' or Kd mutation D227K reduced the TCR photoaffinity labeling on CD8 alpha/beta cells to approximately the same low levels observed on CD8-/- cells. These results indicate that CD8 alpha/beta is a more efficient coreceptor than CD8alpha/alpha, because it more avidly strengthens TCR-ligand binding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The induction of proteinase inhibitor I synthesis in tomato (Lycopersicon esculentum) leaves in response to wounding is strongly inhibited by diethyldithiocarbamic acid (DIECA). DIECA also inhibits the induction of inhibitor I synthesis by the 18-amino acid polypeptide systemin, polygalacturonic acid (PCA), and linolenic acid, but not by jasmonic acid, suggesting that DIECA interferes with the octadecanoid signaling pathway. DIECA only weakly inhibited tomato lipoxygenase activity, indicating that DIECA action occurred at a step after the conversion of linolenic acid to 13(S)-hydroperoxylinolenic acid (HPOTrE). DIECA was shown to efficiently reduce HPOTrE to 13-hydroxylinolenic acid (HOTrE), which is not a signaling intermediate. Therefore, in vivo, DIECA is likely inhibiting the signaling pathway by shunting HPOTrE to HOTrE, thereby severely reducing the precursor pool leading to cyclization and eventual synthesis of jasmonic acid. Phenidone, an inhibitor of lipoxygenase, inhibited proteinase inhibitor I accumulation in response to wounding, further supporting a role for its substrate, linolenic acid, and its product, HPOTrE, as components of the signal-transduction pathway that induces proteinase inhibitor synthesis in response to wounding, systemin, and PCA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G-->T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brooke-Spiegler syndrome, familial cylindromatosis, and familial trichoepithelioma are autosomal-dominant genetic predispositions for benign tumors of skin appendages caused by mutations in the CYLD gene localized on chromosome 16q12-q13. The encoded protein functions as ubiquitin-specific protease (UBP), which negatively regulates NF-kappaB and c-Jun N-terminal kinase (JNK) signaling. We investigated five families affected with these skin neoplasms and identified four premature stop codons and the novel missense mutation D681G in a family in which 11 of 12 investigated tumors were trichoepitheliomas. CYLD protein harboring this missense mutation had a significant reduced ability to inhibit TNF receptor-associated factor (TRAF)2- and TRAF6-mediated NF-kappaB activation, tumor necrosis factor-alpha (TNFalpha)-induced JNK signaling, and to deubiquitinate TRAF2. CYLD-D681G was coimmunoprecipitated by TRAF2, but was unable to cleave K63-linked polyubiquitin chains. Aspartic acid 681 is highly conserved in CYLD homologues and other members of the UBP family, but does not belong to the Cys and His boxes providing the CYLD catalytic triad (Cys601, His871, and Asp889). As reported previously, the homologous residue D295 of HAUSP/USP-7 forms a hydrogen bond with the C-terminal end of ubiquitin and is important for the enzymatic activity. These results underline that D681 in CYLD is required for cleavage of K63-linked polyubiquitin chains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, we have explored ways of inducing a CTL response to a previously defined H-2Kd MHC class I restricted epitope in the circumsporozoite (CS) protein of Plasmodium berghei, and studied in detail the fine specificity of the response. We found that the s.c. injection of a variety of synthetic peptides emulsified in Freund's adjuvant efficiently induced a specific CTL response in (BALB/c x C57BL/6)F1 (H-2d x H-2b) mice. In contrast, BALB/c mice responded only marginally, consistent with the possible requirement for a concomitant Th response that would be provided by the C57BL/6 strain. Similar to our previous observations in analyzing CTL clones from sporozoite-immunized mice, the CTL response induced by peptide immunization was in part cross-reactive with an epitope from the Plasmodium yoelii species. The minimal P. berghei CS epitope, the octapeptide PbCS 253-260, was studied in detail by the analysis of a series of variant CS peptides containing single Ala substitutions. The relative antigenic activity for each variant peptide was calculated for 28 different CTL clones. Overall, the response to this P. berghei CTL epitope appeared to be extremely diverse in terms of fine specificity. This was evident among the CTL derived from sporozoite-immunized mice, as well as among those from peptide-immunized animals. The heterogeneity found at the functional level correlates with the highly diverse TCR repertoire that we have found for the same series of CTL clones in a study that is reported separately. The relative competitor activity for each Ala-substituted peptide was also determined in a quantitative functional competition assay. For the residues (Tyr253 and Ile260) within the 8-mer CS peptide, substitution with Ala reduced competitor activity by at least 40-fold, and for two others the reduction was 5- to 10-fold. When the relative antigenic activity for each CTL/peptide combination was normalized to the relative competitor activity of the peptide, a striking pattern emerged. The two residues that most affected competitor activity showed no additional effect on recognition beyond that observed for competition. In marked contrast, Ala substitutions at the other five positions tested varied widely, depending on the CTL/peptide combination. This pattern not only supports a model whereby the Tyr253 and Ile260 residues anchor the peptide to the Kd molecule, but also implies that they are virtually inaccessible to the TCR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.