1000 resultados para AMASSEDS-III
Resumo:
Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.
Resumo:
The variation in molecule adsorption mode on pretreated highly oriented pyrolytic graphite electrodes, modified with the title complex K10H3[Dy(SiMo11O39)(2)] by cyclic voltammetry in the title complex solution, was observed in situ by electrochemical scanning tunnelling microscopy (ECSTM) with molecular resolution in sodium sulphate solution. According to the ECSTM images and the known molecular structure we conclude that the adsorption mode of the title complex modified electrode changed during potential cycling from ''vertical'' to ''inclined'' and then ''horizontal'' or ''flat'' mode, i.e. the title complex adsorbed on the surface of electrode by one ligand of the complex at first, then began to incline and was finally adsorbed by two ligands of the complex. This result indicates that the adsorption mode on the modified electrode surface changed during potential cycling in the sulphate solution and a much more stable molecular layer was formed. The change in adlattice of adsorbates on the modified electrode surface from hexagonal to rectangular was also observed by ECSTM. A plausible model was given to explain this process.
Resumo:
The crystal structures, electronic spectra, and Cu2p XPS of Cu(III) complexes Na4H[Cu(H2TeO6)(2)]. 17H(2)O and Na4K[Cu(HlO(6))(2)]. 12H(2)O have been described. The characterizations of a Cu(III) atom in a complex are as follows: (i) In a square-planar coordination, the average bond length of Cu-O is 0.183 nm, shorter than the 0.190-0.200 nm found for a Cu(II) complex. (2) The ''blue shift'' occurs for d-d transitions in the electronic spectrum of the Cu(III) complex compared to those of its related Cu(II) complex, resulting from the higher valence state. (3) Cu(III) compounds with CuO4 square-planar coordination are expected to be diamagnetic whereas Cu(II) compounds to be paramagnetic. (4) Comprehensive investigations on Cu2p XPS show that the binding energy of Cu2p(3/2) of a pure Cu(III) compound is about 2.0 eV higher than that of its corresponding Cu(II) compound: the shake-up satellites do not appear in the Cu2p XPS for a pure diamagnetic Cu(III) compound, the same as found for a diamagnetic Ni(II) compound: the FWHM of the signal of Cu2p XPS may become broader for Cu(III) compound because its core hole's lifetime shortens due to the higher valence state of copper. (C) 1995 Academic Press, Inc.
Resumo:
The solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III) and Lu(III) with Cyanex 302 (bis(2,4,4-trimethylpentyl)monothiophosphinic acid) and Cyanex 301 ( bis(2,4,4-trimethylpentyl) dithiophosphinic acid) in n-hexane from acidic aqueous solutions has been investigated systematically. The effect of equilibrium aqueous acidity on the extraction with these reagents was studied. The separation of Th(IV), Fe(III) and Lu(III) from Sc(III), or the separation of other metals from Lu(III) with Cyanex 302, can be achieved by controlling the aqueous acidity. However, Cyanex 301 exhibited a poor selectivity for the above metals, except for Lu(III). The extraction of these metals with Cyanex 272, Cyanex 302 and Cyanex 301 has been compared. The stripping percentages of Sc(III) for Cyanex 302 and Cyanex 301 in a single stage are near 78% and 75% with 3.5 mol/L and 5.8 mol/L sulphuric acid solutions, respectively. The effects of extractant concentration and temperature on the extraction of Sc(III) were investigated. The stoichiometry of the extraction of Sc(III) with Cyanex 302 was determined. The role of different components of Cyanex 302 in the extraction of Sc(III) was discussed.
Resumo:
The differences between the solvent extraction of Tb(III) and Tb(IV) periodate complexes with quaternary amine were studied carefully for the first time. The effects of extractant concentration, phase ratio, the pH value of stock solution, salting-out agent, extractant form, diluent, and extraction time were comprehensively investigated. Under optimal conditions the separation factor between Tb(IV) and Tb(III) periodate complexes is over 5.5.
Resumo:
A new solid polymer electrolyte has been prepared using NaClO4 and a comb-branch polymer with oligo(ethylene oxide) side chains. The thermal and ionic conductive properties of the electrolytes were investigated. The profile of conductivity at various temperatures follows the VTF plots.
Resumo:
In the cyclic voltammograms of complexes with periodate and tellurate, the anodic and cathodic peaks were observed evidently for Cu(III)/Cu(II) couples in caustic potash aqueous solutions. Copper(III) complexes were obtained by utilizing ozone as oxidant
Resumo:
A new non-cyclic ligand, tris(4-carboxy-3-oxabutyl) amine (H3L . HCl) and its lanthanum(III) complex have been prepared and their crystal structures determined. In the lanthanum(III) complex the metal ion is coordinated to one nitrogen atom, three ether o
Resumo:
The electrochemical and electrocatalytic properties of iron(III)-substituted Dawson-type tungstophosphate anion are described. The anion exhibits a one-electron couple associated with the Fe(III) center and two two-electron waves attributed to redox proce
Resumo:
The extraction equilibrium data of sulphuric acid and scandium(III) with bis(2,4,4-trimethylpentyl)phosphinic acid (H[BTMPP]) from sulphuric acid solutions have been obtained. There are two extraction mechanisms of scandium(III) with H[BTMPP] at different
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
The mechanism of electrochemical redox reactions of (tetra-phenylporphinato) managanese(III) perchlorate, (TPP)Mn(III)ClO4, was studied In the presence of chloride anions in dichloroethane solution. It was demonstrated that Mn(II) or Mn (III) centre can be coordinated with only one chloride anion, this result makes an about 100 mV negative shift of half-wave potential of Mn (III)/Mn (II) reduction. An equilibrium constant of 2.2 x 10(4) was determined for the complexation reaction of Cl- and Mn(III) centre.
Resumo:
Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31-137 of EseC are required for EseC-EscA interaction, Mutation of EseC residues 31-137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31-137 of EseC increased the LD50 by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.
Resumo:
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.