991 resultados para ALPHA-FE2O3 NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper-catalyzed, ligand-promoted decarboxylative coupling of readily available a,fi-unsaturated acids with sodium aryl sulfinates is presented. This method provides a new avenue for the synthesis of vinyl sulfones via a decarboxylative radical coupling strategy by employing a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O, TBHP in decane as an oxidant, and 1,10-phenanthroline as a ligand. The salient feature of this method is that it furnishes exclusively the (E)-isomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close-packed helices with mixed hydrogen bond directionality are unprecedented in the structural chemistry of alpha-polypeptides. While NMR studies in solution state provide strong evidence for the occurrence of mixed helices in (beta beta)(n) and (alpha beta)(n) sequences, limited information is currently available in crystals. The peptide structures presented show the occurrence of C-11/C-9 helices in (alpha beta)(n) peptides. Transitions between C-11 and C-11/C-9 helices are observed upon varying the alpha-amino acid residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of silver nanoparticles (sNP) on the demixing and the evolution of morphology in off-critical blends of 90/10 and 10/90 (wt/wt) PS/PVME polystyrene/poly(vinyl methyl ether)] was probed here using shear rheology and optical microscopy. The faster component (PVME) has a higher molecular weight (80 kDa) than the slower component (PS, 35 kDa), which makes this system quite interesting to study with respect to the evolving morphology, as the blends transit through the binodal and the spinodal envelopes. An unusual demixing behavior was observed in both PVME rich and PS rich blends. Temperature modulated differential scanning calorimetry measurements showed that the T-g value for the blends with sNP was slightly lower than that of the neat blends. A decreased volume of cooperativity at T-g suggests confined segmental dynamics in the presence of sNP. Although, the addition of sNP had no influence on the thermodynamic demixing temperature, it significantly altered the elasticity of the minor component during the transition of the blend from the homogeneous to the heterogeneous state. This is manifested from energetically driven localization of the sNP in the PVME phase during demixing. As a direct consequence of this, the formation of the microstructures upon demixing was observed to be delayed in the presence of sNP. Interestingly, in the intermediate quench depth, the higher viscoelastic phase evolved as an interconnected network, which subsequently coarsened into discrete droplets in the late stages for the 90/10 PS/PVME blends. Similar observations were made for 10/90 PS/PVME blends where threads of PVME appeared at deeper quench depths in the presence of sNP. The interconnected network formation of the minor phase (here PVME), which is also the faster component in the blend, was different from the usual demixing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These -helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze -helices in a high-resolution dataset of integral -helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420-3436. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen-related receptor (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sm3+ doped Y3-xSmxFe5O12 (x = 0-3) nanopowders were prepared using modified sol-gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 degrees C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3-xSmxFe5O12 (0-3) decreases on increasing the Sm concentration (x). The low values of magnetic (mu' and mu `') properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.