905 resultados para ALDOL REACTIONS
Resumo:
Female circumcision was almost unheard of in the United States a few years ago. The recent influx of African immigrants has increased media attention to the subject, leading to laws criminalizing female circumcision. This study examines the reactions of African immigrants living in Houston, Texas, to media portrayal and legislation regarding female circumcision in an attempt to understand the effectiveness of U.S. laws, and media messages in deterring the practice. ^ Through literature reviews the study looks at how female circumcision is portrayed in the Houston Chronicle, and gives detailed discussion of laws regarding it. Attitudes, beliefs, experiences and reactions of African immigrants towards the practice and American's perceptions of female circumcision is examined via a series of case studies. ^ Data show that media and laws portray female circumcision negatively and make little attempt to understand the cultural practice, generating outrage among Africans who would like to see changes in the practice. ^
Resumo:
Wolfgang Weisl
Resumo:
The potential for the direct analysis of enzyme reactions by fast atom bombardment (FAB) mass spectrometry has been investigated. Conditions are presented for the maintenance of enzymatic activity under FAB conditions along with FAB mass spectrometric data showing that these conditions can be applied to solutions of enzyme and substrate to follow enzymatic reactions inside the mass spectrometer in real-time. In addition, enzyme kinetic behavior under FAB mass spectrometric conditions is characterized using trypsin and its assay substrate, TAME, as an enzyme-substrate reaction model. These results show that two monitoring methods can be utilized to follow reactions by FAB mass spectrometry. The advantages of each method are discussed and illustrated by obtaining kinetic parameters from the direct analysis of enzyme reactions with assay or peptide substrates. ^
Resumo:
The ascertainment and analysis of adverse reactions to investigational agents presents a significant challenge because of the infrequency of these events, their subjective nature and the low priority of safety evaluations in many clinical trials. A one year review of antibiotic trials published in medical journals demonstrates the lack of standards in identifying and reporting these potentially fatal conditions. This review also illustrates the low probability of observing and detecting rare events in typical clinical trials which include fewer than 300 subjects. Uniform standards for ascertainment and reporting are suggested which include operational definitions of study subjects. Meta-analysis of selected antibiotic trials using multivariate regression analysis indicates that meaningful conclusions may be drawn from data from multiple studies which are pooled in a scientifically rigorous manner. ^
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential with a small barrier for hydrogen transfer. From an “atoms in molecules” analysis of the electron density, it is found that the hydrogen atom is stabilized by covalent bonds to both oxygens. Large atomic partial charges on the hydrogen-bonded atoms are found experimentally and theoretically. Therefore, the hydrogen bond gains stabilization from both covalency and from the normal electrostatic interactions found for long, weak hydrogen bonds. Based on comparisons with other systems having short-strong hydrogen bonds or LBHBs, it is proposed that all short-strong and LBHB systems possess similar electronic features of the hydrogen-bonded region, namely polar covalent bonds between the hydrogen atom and both heteroatoms in question.
Resumo:
The ability of Nicotiana tabacum cell cultures to utilize farnesol (F-OH) for sterol and sesquiterpene biosynthesis was investigated. [3H]F-OH was readily incorporated into sterols by rapidly growing cell cultures. However, the incorporation rate into sterols was reduced by greater than 70% in elicitor-treated cell cultures whereas a substantial proportion of the radioactivity was redirected into capsidiol, an extracellular sesquiterpene phytoalexin. The incorporation of [3H]F-OH into sterols was inhibited by squalestatin 1, suggesting that [3H]F-OH was incorporated via farnesyl pyrophosphate (F-P-P). Consistent with this possibility, N. tabacum proteins were metabolically labeled with [3H]F-OH or [3H]geranylgeraniol ([3H]GG-OH). Kinase activities converting F-OH to farnesyl monophosphate (F-P) and, subsequently, F-P-P were demonstrated directly by in vitro enzymatic studies. [3H]F-P and [3H]F-P-P were synthesized when exogenous [3H]F-OH was incubated with microsomal fractions and CTP. The kinetics of formation suggested a precursor–product relationship between [3H]F-P and [3H]F-P-P. In agreement with this kinetic pattern of labeling, [32P]F-P and [32P]F-P-P were synthesized when microsomal fractions were incubated with F-OH and F-P, respectively, with [γ-32P]CTP serving as the phosphoryl donor. Under similar conditions, the microsomal fractions catalyzed the enzymatic conversion of [3H]GG-OH to [3H]geranylgeranyl monophosphate and [3H]geranylgeranyl pyrophosphate ([3H]GG-P-P) in CTP-dependent reactions. A novel biosynthetic mechanism involving two successive monophosphorylation reactions was supported by the observation that [3H]CTP was formed when microsomes were incubated with [3H]CDP and either F-P-P or GG-P-P, but not F-P. These results document the presence of at least two CTP-mediated kinases that provide a mechanism for the utilization of F-OH and GG-OH for the biosynthesis of isoprenoid lipids and protein isoprenylation.
Resumo:
The new antigen receptor (NAR) gene in the nurse shark diversifies extensively by somatic hypermutation. It is not known, however, whether NAR somatic hypermutation generates the primary repertoire (like in the sheep) or rather is used in antigen-driven immune responses. To address this issue, the sequences of NAR transmembrane (Tm) and secretory (Sec) forms, presumed to represent the primary and secondary repertoires, respectively, were examined from the peripheral blood lymphocytes of three adult nurse sharks. More than 40% of the Sec clones but fewer than 11% of Tm clones contained five mutations or more. Furthermore, more than 75% of the Tm clones had few or no mutations. Mutations in the Sec clones occurred mostly in the complementarity-determining regions (CDR) with a significant bias toward replacement substitutions in CDR1; in Tm clones there was no significant bias toward replacements and only a low level of targeting to the CDRs. Unlike the Tm clones where the replacement mutational pattern was similar to that seen for synonymous changes, Sec replacements displayed a distinct pattern of mutations. The types of mutations in NAR were similar to those found in mouse Ig genes rather than to the unusual pattern reported for shark and Xenopus Ig. Finally, an oligoclonal family of Sec clones revealed a striking trend toward acquisition of glutamic/aspartic acid, suggesting some degree of selection. These data strongly suggest that hypermutation of NAR does not generate the repertoire, but instead is involved in antigen-driven immune responses.
Resumo:
Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.
Resumo:
The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.
Resumo:
Objectives: To assess views of parents of babies who participated in a neonatal trial, about feedback of trial results.