822 resultados para 620401 Fresh fruit and vegetables (post harvest)
Resumo:
Experiments to evaluate the effect of in-season calcium (Ca) sprays on late-season peach (Prunus persica L. Batsch cv. Calrico) were carried out for a 2-year period. Calcium formulations (0.5% and 1.0% in 2008 and only 0.5% tested in 2009) supplied either as CaCl2 or Ca propionate in combination with two or three adjuvants (0.05% of the nonionic surfactants Tween 20 and Break Thru, and 0.5% carboxymethylcellulose, CMC) were sprayed four to five times over the growing season. Peach mesocarp and endocarp Ca concentrations were determined on a 15-day basis from the beginning of May until the end of June. Further tissue analyses were performed at harvest. A decreasing trend in fruit Ca concentrations over the growing season was always observed regardless of the Ca treatments. Both in 2008 and 2009, significant tissue Ca increments associated with the application of Ca-containing sprays in combination with adjuvants were only observed in June, which may be coincident with the period of pit hardening. In 2008, both at harvest and after cold storage, the total soluble-solids concentration (° Brix) of fruits supplied with Ca propionate (0.5% and 1.0% Ca) was always lower as compared to the rest of treatments. The application of multiple Ca-containing sprays increased firmness at harvest and after cold storage, especially when CaCl2 was the active ingredient used. Supplying the adjuvants Tween 20 and CMC increased fruit acidity both at harvest and after cold storage. Evaluation of the development of physiological disorders after cold storage (2 weeks at 0°C) indicated a lower susceptibility of Ca-treated fruits to internal browning. Fruits treated with multiple CaCl2-, CMC-, and Break Thru®-containing sprays during the growing season were significantly less prone to the development of chilling injuries as compared to untreated peaches.
Resumo:
Two instrumented spheres IS 100 were used to evaluate the quality of post-harvest operations. Results obtained from measurements made with both IS (8.8 cm 0 and 6.2 cm 0) show significant differences. Both IS measure the same values of the same variables for soft materials, but not for hard surfaces. Four packing lines belonging to different cooperatives of the region of Murcia (two for stone fruits and two for citrus) were tested. IS values obtained in transfers belonging to the tested lines lay well above 50 g's in most of them Much higher impact intensities are registered in citrus lines than in stone fruit packing lines. To study the incidence of a certain packing line on different products an interaction fruit-packing line test was perf01med. In all cases, more than 50% of fruits belonging to the post-handling sample showed some kind of damage. Bruises evolve after 48 hours storage at room temperature.
Resumo:
Banana fruit are highly susceptible to chilling injury during low temperature storage. Experiments were conducted to compare ethylene binding during storage at chilling (3 and 8 degreesC) versus optimum (13 degreesC) temperatures. The skins of fruit stored at 3 and 8 degreesC gradually darkened as storage duration increased. This chilling effect was reflected in increasing membrane permeability as shown by increased relative electrolyte leakage from skin tissue. In contrast, banana fruit stored for 8 days at 13 degreesC showed no chilling injury symptoms. Exposure of banana fruit to the ethylene binding inhibitor 1-methylcyclopropene (1 mul l(-1) 1-MCP) prevented ripening. However, this treatment also enhanced the chilling injury accelerated the occurrence of chilling injury-associated increased membrane permeability. C-14-ethylene release assay showed that ethylene binding by banana fruit stored at low temperature decreased with reduced storage temperature and/or prolonged storage time. Fruit exposed to 1-MCP for 12 h and then stored at 3 or 8 degreesC exhibited lower ethylene binding than those stored at 13 degreesC. Thus, chilling injury of banana fruit stored at low temperature is associated with a decrease in ethylene binding. The ability of tissue to respond to ethylene is evidently reduced, thereby resulting in failure to ripen.
Resumo:
Litchi (Litchi chinensis Sonn.) is a subtropical to tropical fruit of high commercial value in international trade. However, harvested litchi fruit rapidly lose their bright red skin colour. Peel browning of harvested litchi fruit has largely been attributed to rapid degradation of red anthocyanin pigments. This process is associated with enzymatic oxidation of phenolics by polyphenol oxidase (PPO) and/or peroxidase (POD). PRO and POD from litchi pericarp cannot directly oxidize anthocyanins. Moreover, PPO substrates in the pericarp are not well characterised. Consequently, the roles of PPO and POD in litchi browning require further investigation. Recently, an anthocyanase catalysing the hydrolysis of sugar moieties from anthocyanin to anthocyanidin has been identified in litchi peel for the first time. Thus, litchi enzymatic browning may involve an anthocyanase-anthocyanin-phenolic-PPO reaction. Current research focus is on characterising the properties of the anthocyanase involved in anthocyanin degradation. Associated emphasis is on maintenance of membrane functions in relation to loss of compartmentation between litchi peel oxidase enzymes and their substrates. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This case study reports the post-harvest qualities of conventionally versus organically grown banana fruit from nearby plantations in the Dominican Republic. The comparison involved six repeated harvests over the transition from cooler to hotter seasons. Green mature Cavendish 'Grande Naine' banana fruit were shipped to the UK. They were triggered to ripen with ethylene gas and kept under simulated retail conditions. Fruit mass, colour, firmness and flavour parameters were measured every second day over 12 d of shelf life. Sensory comparisons were conducted on four of the six harvest times. Significant differences (P<0.05) in measured quality attributes between conventionally and organically grown fruit were few and marginal. Moreover, any differences were inconsistent across harvest-times and during shelf life. Thus, organically and conventionally grown product had almost identical qualities. Sensory comparison confirmed that there was no flavour difference. This case study provides data that challenge a general perception that organic bananas have better flavour than conventional bananas.
Resumo:
Previous investigations with 1-methylcyclopropene (1-MCP) on avocado (Persea americana Mill.) fruit have focussed mainly on improving storage life by reducing the severity of disorders causing discolouration of the flesh. Development of 1-MCP and ethylene treatments, which also help control the time to reach the eating ripe stage, may confer additional practical benefits. In this context, the current study investigated the potential of 1-MCP to accurately manipulate ripening of non-stored 'Hass' avocado fruit by treatment before or after ethylene and at different times during ripening. To investigate this, 500 nL L-1 1-MCP was applied within 1 day after harvest, followed by ethylene 0-14 days after 1-MCP. In addition, fruit were treated with ethylene, then 1-MCP 0-8 days after ethylene. Treatment of fruit with 500 nL L-1 1-MCP for 18 h at 20 degreesC provided the maximum effect by increasing the days from harvest to ripe (DTR) from 8 (with no 1-MCP) to 20. Fruit treated with 500 nL L-1 1-MCP for 18 h at 20 degreesC remained insensitive to 100 muL L-1 ethylene applied between 0 and 14 days after 1-MCP for 24 h at 20 degreesC. Ripening of fruit exposed to 100 muL L-1 ethylene for 24 h at 20 degreesC could be delayed by up to 3.3 days by applying 500 nL L-1 1-MCP for 18 h at 20 degreesC up to 2 days after ethylene treatment. However, once the fruit started to soften (sprung) there was little effect of 1-MCP on DTR, compared with no 1-MCP. 1-MCP treatment was associated with increased severity of body rots (caused mainly by Colletotrichum spp.) and stem-end rots (caused mainly by Dothiorella spp.), which was likely due to the increased DTR in these treatments. Significant differences in disease severity were found between orchards (replications), with replicates with low disease severity being less affected by 1-MCP treatment. These results indicate that 1-MCP can delay ripening, but careful sourcing of fruit is required to reduce the risk of diseases in ripe fruit. There is some capacity to delay ripening using 1-MCP after ethylene. There is little potential to control ripening using ethylene after treatment with 500 nL L-1 1-1-MCP, but lower concentrations may be more effective. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Treatment of cut freesia var. Cote d'Azur flowers with methyl jasmonate (MeJA, 0.1 mu l MeJA l(-1)) vapour suppressed petal specking caused by Botrytis cinerea infection. MeJA efficacy was concentration and incubation temperature dependent. Disease severity, lesion numbers and lesion diameters decreased with increasing MeJA concentration from 0.025 to 0.1 mu l MeJA l(-1). However, there were no significant (P > 0.05) differences among MeJA concentrations examined. MeJA was more effective in reducing B. cinerea flower specking at 20 degrees C than at 12 degrees C. MeJA treatment was ineffective at 5 degrees C. At 20 degrees C, MeJA treatment at 0.1 mu l MeJA l(-1) reduced disease severity, lesion numbers and lesion diameters by 58, 50 and 48%, respectively, as compared to untreated controls. In a repeat experiment, disease severity, lesion numbers and lesion diameters on MeJA vapour treated flowers after 12 h of incubation were reduced by 68, 56 and 50%, respectively. MeJA did not exert direct antifungal activity in-vitro, suggesting that treatment in-vivo reduced B. cinerea-induced flower specking by induction of host defence responses. MeJA at 0.1 mu l MeJA l(-1) significantly (P < 0.05) increased vase life of cut freesia flowers and delayed senescence judged by lower wilt scores and higher fresh weights as compared to untreated controls. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ginger oil, obtained by steam distillation of the rhizome of Zingiber officinale Roscoe, is used in the beverage and fragrance industries. Ginger oil displays considerable compositional diversity, but is typically characterized by a high content of sesquiterpene hydrocarbons, including zingiberene, arcurcumene, beta-bisabolene, and beta-sesquiphellandrene. Australian ginger oil has a reputation for possessing a particular lemony aroma, due to its high content of the isomers neral and geranial, often collectively referred to as citral. Fresh rhizomes of 17 clones of Australian ginger, including commercial cultivars and experimental tetraploid clones, were steam distilled 7 weeks post-harvest, and the resulting oils were analyzed by GC-MS. The essential oils of 16 of the 17 clones, including the tetraploid clones and their parent cultivar, were found to be of substantially similar composition. These oils were characterized by very high citral levels (51-71%) and relatively low levels of the sesquiterpene hydrocarbons typical of ginger oil. The citral levels of most of these oils exceeded those previously reported for ginger oils. The neral-to-geranial ratio was shown to be remarkably constant (0.61 +/- 0.01) across all 17 clones. One clone, the cultivar Jamaican, yielded oil with a substantially different composition, lower citral content and higher levels of sesquiterpene hydrocarbons. Because this cultivar also contains significantly higher concentrations of pungent gingerols, it possesses unique aroma and flavor characteristics, which should be of commercial interest.
Resumo:
Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.
Resumo:
Das Verfahren der Lebensmitteltrocknung wird häufig angewendet, um ein Produkt für längere Zeit haltbar zu machen. Obst und Gemüse sind aufgrund ihres hohen Wassergehalts leicht verderblich durch biochemische Vorgänge innerhalb des Produktes, nicht sachgemäße Lagerung und unzureichende Transportmöglichkeiten. Um solche Verluste zu vermeiden wird die direkte Trocknung eingesetzt, welche die älteste Methode zum langfristigen haltbarmachen ist. Diese Methode ist jedoch veraltet und kann den heutigen Herausforderungen nicht gerecht werden. In der vorliegenden Arbeit wurde ein neuer Chargentrockner, mit diagonalem Luftstömungskanal entlang der Länge des Trocknungsraumes und ohne Leitbleche entwickelt. Neben dem unbestreitbaren Nutzen der Verwendung von Leitblechen, erhöhen diese jedoch die Konstruktionskosten und führen auch zu einer Erhöhung des Druckverlustes. Dadurch wird im Trocknungsprozess mehr Energie verbraucht. Um eine räumlich gleichmäßige Trocknung ohne Leitbleche zu erreichen, wurden die Lebensmittelbehälter diagonal entlang der Länge des Trockners platziert. Das vorrangige Ziel des diagonalen Kanals war, die einströmende, warme Luft gleichmäßig auf das gesamte Produkt auszurichten. Die Simulation des Luftstroms wurde mit ANSYS-Fluent in der ANSYS Workbench Plattform durchgeführt. Zwei verschiedene Geometrien der Trocknungskammer, diagonal und nicht diagonal, wurden modelliert und die Ergebnisse für eine gleichmäßige Luftverteilung aus dem diagonalen Luftströmungsdesign erhalten. Es wurde eine Reihe von Experimenten durchgeführt, um das Design zu bewerten. Kartoffelscheiben dienten als Trocknungsgut. Die statistischen Ergebnisse zeigen einen guten Korrelationskoeffizienten für die Luftstromverteilung (87,09%) zwischen dem durchschnittlich vorhergesagten und der durchschnittlichen gemessenen Strömungsgeschwindigkeit. Um den Effekt der gleichmäßigen Luftverteilung auf die Veränderung der Qualität zu bewerten, wurde die Farbe des Produktes, entlang der gesamten Länge der Trocknungskammer kontaktfrei im on-line-Verfahren bestimmt. Zu diesem Zweck wurde eine Imaging-Box, bestehend aus Kamera und Beleuchtung entwickelt. Räumliche Unterschiede dieses Qualitätsparameters wurden als Kriterium gewählt, um die gleichmäßige Trocknungsqualität in der Trocknungskammer zu bewerten. Entscheidend beim Lebensmittel-Chargentrockner ist sein Energieverbrauch. Dafür wurden thermodynamische Analysen des Trockners durchgeführt. Die Energieeffizienz des Systems wurde unter den gewählten Trocknungsbedingungen mit 50,16% kalkuliert. Die durchschnittlich genutzten Energie in Form von Elektrizität zur Herstellung von 1kg getrockneter Kartoffeln wurde mit weniger als 16,24 MJ/kg und weniger als 4,78 MJ/kg Wasser zum verdampfen bei einer sehr hohen Temperatur von jeweils 65°C und Scheibendicken von 5mm kalkuliert. Die Energie- und Exergieanalysen für diagonale Chargentrockner wurden zudem mit denen anderer Chargentrockner verglichen. Die Auswahl von Trocknungstemperatur, Massenflussrate der Trocknungsluft, Trocknerkapazität und Heiztyp sind die wichtigen Parameter zur Bewertung der genutzten Energie von Chargentrocknern. Die Entwicklung des diagonalen Chargentrockners ist eine nützliche und effektive Möglichkeit um dei Trocknungshomogenität zu erhöhen. Das Design erlaubt es, das gesamte Produkt in der Trocknungskammer gleichmäßigen Luftverhältnissen auszusetzen, statt die Luft von einer Horde zur nächsten zu leiten.
Resumo:
Background Sweet cherries (Prunus avium L.) are a nutritious fruit which are rich in polyphenols and have high antioxidant potential. Most sweet cherries are consumed fresh and a small proportion of the total sweet cherries production is value added to make processed food products. Sweet cherries are highly perishable fruit with a short harvest season, therefore extensive preservation and processing methods have been developed for the extension of their shelf-life and distribution of their products. Scope and Approach In this review, the main physicochemical properties of sweet cherries, as well as bioactive components and their determination methods are described. The study emphasises the recent progress of postharvest technology, such as controlled/modified atmosphere storage, edible coatings, irradiation, and biological control agents, to maintain sweet cherries for the fresh market. Valorisations of second-grade sweet cherries, as well as trends for the diversification of cherry products for future studies are also discussed. Key Findings and Conclusions Sweet cherry fruit have a short harvest period and marketing window. The major loss in quality after harvest include moisture loss, softening, decay and stem browning. Without compromising their eating quality, the extension in fruit quality and shelf-life for sweet cherries is feasible by means of combination of good handling practice and applications of appropriate postharvest technology. With the drive of health-food sector, the potential of using second class cherries including cherry stems as a source of bioactive compound extraction is high, as cherry fruit is well-known for being rich in health-promoting components.