970 resultados para 5000
Resumo:
Acute dissection and rupture of aortic aneurysms comprise for 1-2% of all deaths in industrialized countries. Dilation of the aorta is caused by a multitude of mechanisms including inherited connective tissue disorders such as Marfan syndrome (MFS). MFS is one of the most common inherited connective tissue disorders affecting 1 in 5000 individuals. Although the phenotype of MFS can be quite variable, aneurysmal dilation of the aortic root and consecutive acute aortic dissection is the leading cause of death in this patient population. Over the past years it has been shown that a comprehensive understanding of this disorder provides greater understanding of vascular wall biology and identifies pathways relevant to aortic aneurysms and dissection in general. The current review discusses the surgical management of patients with MFS with a special emphasis on indications for surgery in this complex group of patients.
Resumo:
Objectives To determine the diagnostic accuracy of World Health Organization (WHO) 2010 and 2006 as well as United States Department of Health and Human Services (DHHS) 2008 definitions of immunological failure for identifying virological failure (VF) in children on antiretroviral therapy (ART). Methods Analysis of data from children (<16 years at ART initiation) at South African ART sites at which CD4 count/per cent and HIV-RNA monitoring are performed 6-monthly. Incomplete virological suppression (IVS) was defined as failure to achieve ≥1 HIV-RNA ≤400 copies/ml between 6 and 15 months on ART and viral rebound (VR) as confirmed HIV-RNA ≥5000 copies/ml in a child on ART for ≥18 months who had achieved suppression during the first year on treatment. Results Among 3115 children [median (interquartile range) age 48 (20-84) months at ART initiation] on treatment for ≥1 year, sensitivity of immunological criteria for IVS was 10%, 6% and 26% for WHO 2006, WHO 2010 and DHHS 2008 criteria, respectively. The corresponding positive predictive values (PPV) were 31%, 20% and 20%. Diagnostic accuracy for VR was determined in 2513 children with ≥18 months of follow-up and virological suppression during the first year on ART with sensitivity of 5% (WHO 2006/2010) and 27% (DHHS 2008). PPV results were 42% (WHO 2010), 43% (WHO 2006) and 20% (DHHS 2008). Conclusion Current immunological criteria are unable to correctly identify children failing ART virologically. Improved access to viral load testing is needed to reliably identify VF in children.
Resumo:
Tyrolean Grey cattle represent a local breed with a population size of approximately 5000 registered cows. In 2003, a previously unknown neurological disorder was recognized in Tyrolean Grey cattle. The clinical signs of the disorder are similar to those of bovine progressive degenerative myeloencephalopathy (weaver syndrome) in Brown Swiss cattle but occur much earlier in life. The neuropathological investigation of an affected calf showed axonal degeneration in the central nervous system (CNS) and femoral nerve. The pedigrees of the affected calves suggested a monogenic autosomal recessive inheritance. We localized the responsible mutation to a 1.9 Mb interval on chromosome 16 by genome-wide association and haplotype mapping. The MFN2 gene located in this interval encodes mitofusin 2, a mitochondrial membrane protein. A heritable human axonal neuropathy, Charcot-Marie-Tooth disease-2A2 (CMT2A2), is caused by MFN2 mutations. Therefore, we considered MFN2 a positional and functional candidate gene and performed mutation analysis in affected and control Tyrolean Grey cattle. We did not find any non-synonymous variants. However, we identified a perfectly associated silent SNP in the coding region of exon 20 of the MFN2 gene. This SNP is located within a putative exonic splice enhancer (ESE) and the variant allele leads to partial retention of the entire intron 19 and a premature stop codon in the aberrant MFN2 transcript. Thus we have identified a highly unusual splicing defect, where an exonic single base exchange leads to the retention of the preceding intron. This splicing defect represents a potential explanation for the observed degenerative axonopathy. Marker assisted selection can now be used to eliminate degenerative axonopathy from Tyrolean Grey cattle.
Resumo:
Objectives To determine the improvement in positive predictive value of immunological failure criteria for identifying virological failure in HIV-infected children on antiretroviral therapy (ART) when a single targeted viral load measurement is performed in children identified as having immunological failure. Methods Analysis of data from children (<16 years at ART initiation) at South African ART sites at which CD4 count/per cent and HIV-RNA monitoring are performed 6-monthly. Immunological failure was defined according to both WHO 2010 and United States Department of Health and Human Services (DHHS) 2008 criteria. Confirmed virological failure was defined as HIV-RNA >5000 copies/ml on two consecutive occasions <365 days apart in a child on ART for ≥18 months. Results Among 2798 children on ART for ≥18 months [median (IQR) age 50 (21-84) months at ART initiation], the cumulative probability of confirmed virological failure by 42 months on ART was 6.3%. Using targeted viral load after meeting DHHS immunological failure criteria rather than DHHS immunological failure criteria alone increased positive predictive value from 28% to 82%. Targeted viral load improved the positive predictive value of WHO 2010 criteria for identifying confirmed virological failure from 49% to 82%. Conclusion The addition of a single viral load measurement in children identified as failing immunologically will prevent most switches to second-line treatment in virologically suppressed children.
Resumo:
The analysis of Komendant's design of the Kimbell Art Museum was carried out in order to determine the effectiveness of the ring beams, edge beams and prestressing in the shells of the roof system. Finite element analysis was not available to Komendant or other engineers of the time to aid them in the design and analysis. Thus, the use of this tool helped to form a new perspective on the Kimbell Art Museum and analyze the engineer's work. In order to carry out the finite element analysis of Kimbell Art Museum, ADINA finite element analysis software was utilized. Eight finite element models (FEM-1 through FEM-8) of increasing complexity were created. The results of the most realistic model, FEM-8, which included ring beams, edge beams and prestressing, were compared to Komendant's calculations. The maximum deflection at the crown of the mid-span surface of -0.1739 in. in FEM-8 was found to be larger than Komendant's deflection in the design documents before the loss in prestressing force (-0.152 in.) but smaller than his prediction after the loss in prestressing force (-0.3814 in.). Komendant predicted a larger longitudinal stress of -903 psi at the crown (vs. -797 psi in FEM-8) and 37 psi at the edge (vs. -347 psi in FEM-8). Considering the strength of concrete of 5000 psi, the difference in results is not significant. From the analysis it was determined that both FEM-5, which included prestressing and fixed rings, and FEM-8 can be successfully and effectively implemented in practice. Prestressing was used in both models and thus served as the main contribution to efficiency. FEM-5 showed that ring and edge beams can be avoided, however an architect might find them more aesthetically appropriate than rigid walls.
Resumo:
In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.
Resumo:
The synthesis of a photolabile derivative of inositol-1,4,5-trisphosphate (IP3) is described. This new caged second messenger (6-ortho-nitroveratryl)-IP3 (6-NV-IP3) has an extinction coefficient of 5000 M(-1) cm(-1) at 350 nm, and a quantum yield of photolysis of 0.12. Therefore, 6-NV-IP3 is photolyzed with UV light about three times more efficiently than the widely used P(4(5))-1-(2-nitrophenyl)ethyl-caged IP3 (NPE-IP3). 6-NV-IP3 has a two-photon cross-section of about 0.035 GM at 730 nm. This absorbance is sufficiently large for effective two-photon excitation in living cells at modest power levels. Using near-IR light (5 mW, 710 nm, 80 MHz, pulse-width 70 fs), we produced focal bursts of IP3 in HeLa cells, as revealed by laser-scanning confocal imaging of intracellular Ca2+ concentrations. Therefore, 6-NV-IP3 can be used for efficient, subcellular photorelease of IP3, not only in cultured cells but also, potentially, in vivo. It is in the latter situation that two-photon photolysis should reveal its true forte.
Resumo:
Three different fissure preparation procedures were tested and compared to the non-invasive approach using a conventional unfilled sealant and a flowable composite. Eighty permanent molars were selected and divided into 4 groups of 20 teeth each. All the teeth were split into 2 halves, and the exposed fissures were photographed under a microscope (35x) before and after being prepared using the following methods: (I) Er:YAG laser (KEY Laser, KaVo) 600 mJ pulse energy, 6 Hz; (II) diamond bur; (III) Er: YAG laser (KEY Laser, KaVo) 200 mJ pulse energy, 4 Hz; (IV) Control group: Powder jet cleaner (Prophyflex, KaVo, Germany). The pre-and postimages were superimposed in order to evaluate the amount of hard tissue removed. Ten teeth in each group were then acid etched and sealed with an unfilled sealant (Delton opaque, Dentsply), while the remaining 10 teeth were acid etched, primed and bonded (Prime ; Bond NT, Dentsply) and sealed with a flowable composite (X-flow, DeTrey, Dentsply). Material penetration and microleakage were evaluated after thermocycling (5000 cycles) and staining with methylene blue 5%. ANOVA and Mann-Whitney tests were applied for statistical analysis. The laser 600 mJ and bur eliminated the greatest amount of hard tissue. The control teeth presented the least microleakage when sealed with Delton or X-flow. A correlation between material penetration and microleakage could not be statistically confirmed. Mechanical preparation prior to fissure sealing did not enhance the final performance of the sealant.
Resumo:
OBJECTIVES AND METHODS: This study investigated the sealing ability of a current available unfilled fissure sealant applied over sound (n=80), artificially created (n=80) and naturally carious fissures (n=80) under different humidity conditions (90+/-2 and 45+/-2% relative humidity) and etching times (40 and 60s). All samples were submitted to 5000 thermal cycles and examined by light microscopy after sectioning. Microleakage, penetration ability, fissure type, fissure entrance angle, sealant occlusal length, caries location and caries depth were assessed. RESULTS: The significantly longer sealant occlusal length and larger entrance angle exhibited by shallow fissures, contributed to their higher microleakage and smaller amounts of unfilled areas compared to deep fissures. Sealant microleakage was significantly influenced by the condition of the enamel (sound, artificial and natural caries) and the caries location in the fissures, but not by enamel caries depth (D1 and D2), etching time, or humidity condition. Natural caries exhibited significantly higher microleakage than sound or artificially created carious fissures. CONCLUSIONS: Based on the results of this study, it can be concluded that location of caries in the fissure rather than its depth should be taken into account when applying a fissure sealant. When the borders of the fissure sealant are on carious enamel, a significantly higher microleakage must be expected. The artificial caries model was not a suitable method to assess the behavior of natural fissure caries.
Resumo:
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Resumo:
A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.
Resumo:
AIM: Acute mountain sickness (AMS) can result in pulmonary and cerebral oedema with overperfusion of microvascular beds, elevated hydrostatic capillary pressure, capillary leakage and consequent oedema as pathogenetic mechanisms. Data on changes in glomerular filtration rate (GFR) at altitudes above 5000 m are very limited. METHODS: Thirty-four healthy mountaineers, who were randomized to two acclimatization protocols, undertook an expedition on Muztagh Ata Mountain (7549 m) in China. Tests were performed at five altitudes: Zurich pre-expedition (PE, 450 m), base camp (BC, 4497 m), Camp 1 (C1, 5533 m), Camp 2 (C2, 6265 m) and Camp 3 (C3, 6865 m). Cystatin C- and creatinine-based (Mayo Clinic quadratic equation) GFR estimates (eGFR) were assessed together with Lake Louise AMS score and other tests. RESULTS: eGFR significantly decreased from PE to BC (P < 0.01). However, when analysing at changes between BC and C3, only cystatin C-based estimates indicated a significant decrease in GFR (P = 0.02). There was a linear decrease in eGFR from PE to C3, with a decrease of approx. 3.1 mL min(-1) 1.73 m(-2) per 1000 m increase in altitude. No differences between eGFR of the two groups with different acclimatization protocols could be observed. There was a significant association between eGFR and haematocrit (P = 0.01), whereas no significant association between eGFR and aldosterone, renin and brain natriuretic peptide could be observed. Finally, higher AMS scores were significantly associated with higher eGFR (P = 0.01). CONCLUSIONS: Renal function declines when ascending from low to high altitude. Cystatin C-based eGFR decreases during ascent in high altitude expedition but increases with AMS scores. For individuals with eGFR <40 mL min(-1) 1.73 m(-2), caution may be necessary when planning trips to high altitude above 4500 m above sea level.
Resumo:
OBJECTIVE: Contact of blood with artificial surfaces and air as well as ischemia/reperfusion injury to the heart and lungs mediate systemic and local inflammation during cardiopulmonary bypass (CPB). Activation of complement and coagulation cascades leads to and accompanies endothelial cell damage. Therefore, endothelial-targeted cytoprotection with the complement inhibitor and endothelial protectant dextran sulfate (DXS, MW 5000) may attenuate CBP-associated myocardial and pulmonary injury. METHODS: Eighteen pigs (DXS, n=10; phosphate buffered saline [PBS], n=8) underwent standard cardiopulmonary bypass. After aortic cross-clamping, cardiac arrest was initiated with modified Buckberg blood cardioplegia (BCP), repeated after 30 and 60 min with BCP containing either DXS (300 mg/10 ml, equivalent to 5mg/kg) or 10 ml of PBS. Following 30 min reperfusion, pigs were weaned from CPB. During 2h of observation, cardiac function was monitored by echocardiography and invasive pressure measurements. Inflammatory and coagulation markers were assessed regularly. Animals were then sacrificed and heart and lungs analyzed. RESULTS: DXS significantly reduced CK-MB levels (43.4+/-14.8 ng/ml PBS, 35.9+/-11.1 ng/ml DXS, p=0.042) and significantly diminished cytokine release: TNFalpha (1507.6+/-269.2 pg/ml PBS, 222.1+/-125.6 pg/ml DXS, p=0.0071), IL1beta (1081.8+/-203.0 pg/ml PBS, 110.7+/-79.4 pg/ml DXS, p=0.0071), IL-6 (173.0+/-91.5 pg/ml PBS, 40.8+/-19.4 pg/ml DXS, p=0.002) and IL-8 (304.6+/-81.3 pg/ml PBS, 25.4+/-14.2 pg/ml DXS, p=0.0071). Tissue endothelin-1 levels were significantly reduced (6.29+/-1.90 pg/100mg PBS, 3.55+/-1.15 pg/100mg DXS p=0.030) as well as thrombin-anti-thrombin formation (20.7+/-1.0 microg/ml PBS, 12.8+/-4.1 microg/ml DXS, p=0.043). Also DXS reduced cardiac and pulmonary complement deposition, neutrophil infiltration, hemorrhage and pulmonary edema (measured as lung water content, 81+/-3% vs 78+/-3%, p=0.047), indicative of attenuated myocardial and pulmonary CPB-injury. Diastolic left ventricular function (measured as dp/dt(min)), pulmonary artery pressure (21+/-3 mmHg PBS, 19+/-3 mmHg DXS, p=0.002) and right ventricular pressure (21+/-1 mmHg PBS, 19+/-3 mmHg DXS p=0.021) were significantly improved with the use of DXS. CONCLUSIONS: Addition of DXS to the BCP solution ameliorates post-CPB injury and to a certain extent improves cardiopulmonary function. Endothelial protection in addition to myocyte protection may improve post-CPB outcome and recovery.