957 resultados para 3RD TRANSMEMBRANE DOMAINS
Resumo:
The piebald locus on mouse chromosome 14 encodes the endothelin-B receptor (EDNRB), a G protein-coupled, seven-transmembrane domain protein, which is required for neural crest-derived melanocyte and enteric neuron development. A spontaneous null allele of Ednrb results in homozygous mice that are predominantly white and die as juveniles from megacolon. To identify the important domains for EDNRB function, four recessive juvenile lethal alleles created by either radiation or chemical mutagens (Ednrb27Pub, Ednrb17FrS, Ednrb1Chlc, and Ednrb3Chlo) were examined at the molecular level. Ednrb27Pub mice harbor a mutation at a critical proline residue in the fifth transmembrane domain of the EDNRB protein. A gross genomic alteration within the Ednrb gene in Ednrb3Chlo results in the production of aberrantly sized transcripts and no authentic Ednrb mRNA. Ednrb17FrS mice exhibited a decreased level of Ednrb mRNA, supporting previous observations that the degree of spotting in piebald mice is dependent on the amount of EDNRB expressed. Finally, no molecular defect was detected in Ednrb1Chlc mice, which produce normal levels of Ednrb mRNA in adult brain, suggesting that the mutation affects important regulatory elements that mediate the expression of the gene during development.
Resumo:
Previous studies of the annexin family of Ca2+ binding proteins identified a soluble monomer in the absence of Ca2+ and a trimer adsorbed on the membrane surface in the presence of Ca2+. On the basis of site-directed spin-labeling studies of annexin XII at low pH, we now report a membrane-inserted form of the protein with a dramatically different structure. The data suggest that upon insertion a continuous transmembrane α-helix is reversibly formed from a helix–loop–helix motif in the solution structure. Other regions with similar membrane-insertion potential were identified in the amino acid sequence, and we propose that the corresponding helices come together to form an aqueous pore that mediates the ion channel activity reported for several annexins.
Resumo:
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p⋅DNA⋅Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p⋅DNA⋅Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.
Resumo:
Natural killer (NK) cell cytotoxicity is regulated in large part by the expression of NK cell receptors able to bind class I major histocompatibility complex glycoproteins. The receptors associated with recognition of HLA-C allospecificities are the two-domain Ig-like molecules, p50 and p58 proteins, with highly homologous extracellular domains but differing in that they have either an activating or inhibitory function, respectively, depending on the transmembrane domain and cytoplasmic tails that they possess. We have compared the binding to HLA-Cw7 of an inhibitory p58 molecule, NKAT2, the highly homologous activating p50 molecule, clone 49, and a second activating p50 molecule, clone 39, which has homologies to both NKAT1 and NKAT2. NKAT2 binds to HLA-Cw7 with very rapid association and dissociation rates. However, the p50 receptors bind only very weakly, if at all, to HLA-C. The molecular basis of this difference is analyzed, and the functional significance of these observations is discussed.
Resumo:
The frizzled gene family of putative Wnt receptors encodes proteins that have a seven-transmembrane-spanning motif characteristic of G protein-linked receptors, though no loss-of-function studies have demonstrated a requirement for G proteins for Frizzled signaling. We engineered a Frizzled-2 chimera responsive to β-adrenergic agonist by using the ligand-binding domains of the β2-adrenergic receptor. The expectation was that the chimera would be sensitive both to drug-mediated activation and blockade, thereby circumventing the problem of purifying soluble and active Wnt ligand to activate Frizzled. Expression of the chimera in zebrafish embryos demonstrated isoproterenol (ISO)-stimulated, propranolol-sensitive calcium transients, thereby confirming the β-adrenergic nature of Wnt signaling by the chimeric receptor. Because F9 embryonic teratocarcinoma cells form primitive endoderm after stable transfection of Frizzled-2 chimera and stimulation with ISO, they were subject to depletion of G protein subunits. ISO stimulation of endoderm formation of F9 stem cells expressing the chimeric receptor was blocked by pertussis toxin and by oligodeoxynucleotide antisense to Gαo, Gαt2, and Gβ2. Our results demonstrate the requirement of two pertussis toxin-sensitive G proteins, Gαo and Gαt, for signaling by the Frizzled-2 receptor.
Resumo:
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.
Resumo:
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos–Jun–AP-1 complex may contribute to its functional versatility at different promoters.
Resumo:
The σ-N (σN) subunit of the bacterial RNA polymerase is a sequence specific DNA-binding protein. The RNA polymerase holoenzyme formed with σN binds to promoters in an inactive form and only initiates transcription when activated by enhancer-binding positive control proteins. We now provide evidence to show that the DNA-binding activity of σN involves two distinct domains: a C-terminal DNA-binding domain that directly contacts DNA and an adjacent domain that enhances DNA-binding activity. The sequences required for the enhancement of DNA binding can be separated from the sequences required for core RNA polymerase binding. These results provide strong evidence for communication between domains within a transcription factor, likely to be important for the function of σN in enhancer-dependent transcription.
Resumo:
Pax proteins are a family of transcription factors with a highly conserved paired domain; many members also contain a paired-type homeodomain and/or an octapeptide. Nine mammalian Pax genes are known and classified into four subgroups: Pax-1/9, Pax-2/5/8, Pax-3/7, and Pax-4/6. Most of these genes are involved in nervous system development. In particular, Pax-6 is a key regulator that controls eye development in vertebrates and Drosophila. Although the Pax-4/6 subgroup seems to be more closely related to Pax-2/5/8 than to Pax-3/7 or Pax-1/9, its evolutionary origin is unknown. We therefore searched for a Pax-6 homolog and related genes in Cnidaria, which is the lowest phylum of animals that possess a nervous system and eyes. A sea nettle (a jellyfish) genomic library was constructed and two pax genes (Pax-A and -B) were isolated and partially sequenced. Surprisingly, unlike most known Pax genes, the paired box in these two genes contains no intron. In addition, the complete cDNA sequences of hydra Pax-A and -B were obtained. Hydra Pax-B contains both the homeodomain and the octapeptide, whereas hydra Pax-A contains neither. DNA binding assays showed that sea nettle Pax-A and -B and hydra Pax-A paired domains bound to a Pax-5/6 site and a Pax-5 site, although hydra Pax-B paired domain bound neither. An alignment of all available paired domain sequences revealed two highly conserved regions, which cover the DNA binding contact positions. Phylogenetic analysis showed that Pax-A and especially Pax-B were more closely related to Pax-2/5/8 and Pax-4/6 than to Pax-1/9 or Pax-3/7 and that the Pax genes can be classified into two supergroups: Pax-A/Pax-B/Pax-2/5/8/4/6 and Pax-1/9/3/7. From this analysis and the gene structure, we propose that modern Pax-4/6 and Pax-2/5/8 genes evolved from an ancestral gene similar to cnidarian Pax-B, having both the homeodomain and the octapeptide.
Resumo:
Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (“stellate”) cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type flies, providing an “identified cell” system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.
Resumo:
Structural models of inward rectifier K+ channels incorporate four identical or homologous subunits, each of which has two hydrophobic segments (M1 and M2) which are predicted to span the membrane as α helices. Since hydrophobic interactions between proteins and membrane lipids are thought to be generally of a nonspecific nature, we attempted to identify lipid-contacting residues in Kir2.1 as those which tolerate mutation to tryptophan, which has a large hydrophobic side chain. Tolerated mutations were defined as those which produced measurable inwardly rectifying currents in Xenopus oocytes. To distinguish between water-accessible positions and positions adjacent to membrane lipids or within the protein interior we also mutated residues in M1 and M2 individually to aspartate, since an amino acid with a charged side chain should not be tolerated at lipid-facing or interior positions, due to the energy cost of burying a charge in a hydrophobic environment. Surprisingly, 17 out of 20 and 17 out of 22 non-tryptophan residues in M1 and M2, respectively, tolerated being mutated to tryptophan. Moreover, aspartate was tolerated at 15 out of 22 and 15 out of 21 non-aspartate M1 and M2 positions respectively. Periodicity in the pattern of tolerated vs. nontolerated mutations consistent with α helices or β strands did not emerge convincingly from these data. We consider the possibility that parts of M1 and M2 may be in contact with water.
Resumo:
Antigen recognition in the adaptive immune response by Ig and T-cell antigen receptors (TCRs) is effected through patterned differences in the peptide sequence in the V regions. V-region specificity forms through genetically programmed rearrangement of individual, diversified segmental elements in single somatic cells. Other Ig superfamily members, including natural killer receptors that mediate cell-surface recognition, do not undergo segmental reorganization, and contain type-2 C (C2) domains, which are structurally distinct from the C1 domains found in Ig and TCR. Immunoreceptor tyrosine-based inhibitory motifs that transduce negative regulatory signals through the cell membrane are found in certain natural killer and other cell surface inhibitory receptors, but not in Ig and TCR. In this study, we employ a genomic approach by using the pufferfish (Spheroides nephelus) to characterize a nonrearranging novel immune-type receptor gene family. Twenty-six different nonrearranging genes, which each encode highly diversified V as well as a V-like C2 extracellular domain, a transmembrane region, and in most instances, an immunoreceptor tyrosine-based inhibitory motif-containing cytoplasmic tail, are identified in an ≈113 kb P1 artificial chromosome insert. The presence in novel immune-type receptor genes of V regions that are related closely to those found in Ig and TCR as well as regulatory motifs that are characteristic of inhibitory receptors implies a heretofore unrecognized link between known receptors that mediate adaptive and innate immune functions.
Resumo:
An oligoribonucleotide (a 27-mer) that mimics the sarcin/ricin (S/R) domain of Escherichia coli 23S rRNA binds elongation factor EF-G; the Kd is 6.9 μM, whereas for binding to ribosomes it is 0.7 μM. Binding saturates when EF-G and the S/R RNA are equimolar; at saturation 70% of the input RNA is in complexes with EF-G. Binding of EF-G to S/R RNA does not require GTP but is inhibited by GDP; the inhibition by GDP is overcome by GTP. The effects of mutations of the S/R domain nucleotides G2655, A2660, and G2661 suggest that EF-G recognizes the conformation of the RNA rather than the identity of the nucleotides. EF-G also binds to an oligoribonucleotide (an 84-mer) that has the thiostrepton region of 23S rRNA; however, EF-G binds independently to S/R and thiostrepton oligoribonucleotides.
Resumo:
Carbamoyl-phosphate synthetases (CPSs) utilize two molecules of ATP at two internally duplicated domains, B and C. Domains B and C have recently been shown to be structurally [Thoden, J. B., Holden, H. M., Wesenberg, G., Raushel, F. M. & Rayment, I. (1997) Biochemistry 36, 6305–6316] and functionally [Guy, H. I. & Evans, D. R. (1996) J. Biol. Chem. 271, 13762–13769] equivalent. We have carried out a site-directed mutagenic analysis that is consistent with ATP binding to a palmate motif rather than to a Walker A/B motif in domains B and C. To accommodate our present findings, as well as the other recent findings of structural and functional equivalence, we are proposing a novel mechanism for CPS. In this mechanism utilization of ATP bound to domain C is coupled to carbamoyl-phosphate synthesis at domain B via a nucleotide switch, with the energy of ATP hydrolysis at domain C allowing domain B to cycle between two alternative conformations.
Resumo:
In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.