910 resultados para 3D user Interfaces
Resumo:
Understanding complex systems within the human body presents a unique challenge for medical engineers and health practitioners. One significant issue is the ability to communicate their research findings to audiences with limited medical knowledge or understanding of the behaviour and composition of such structures. Much of what is known about the human body is currently communicated through abstract representations which include raw data sets, hand drawn illustrations or cellular automata. The development of 3D Computer Graphics Animation has provided a new medium for communicating these abstract concepts to audiences in new ways. This paper presents an approach for the visualisation of human articular cartilage deterioration using 3D Computer Graphics Animation. The animated outcome of this research introduces the complex interior structure of human cartilage to audiences with limited medical engineering knowledge.
Resumo:
We introduce a lightweight biometric solution for user authentication over networks using online handwritten signatures. The algorithm proposed is based on a modified Hausdorff distance and has favorable characteristics such as low computational cost and minimal training requirements. Furthermore, we investigate an information theoretic model for capacity and performance analysis for biometric authentication which brings additional theoretical insights to the problem. A fully functional proof-of-concept prototype that relies on commonly available off-the-shelf hardware is developed as a client-server system that supports Web services. Initial experimental results show that the algorithm performs well despite its low computational requirements and is resilient against over-the-shoulder attacks.
Resumo:
Many older people have difficulties using modern consumer products due to increased product complexity both in terms of functionality and interface design. Previous research has shown that older people have more difficulty in using complex devices intuitively when compared to the younger. Furthermore, increased life expectancy and a falling birth rate have been catalysts for changes in world demographics over the past two decades. This trend also suggests a proportional increase of older people in the work-force. This realisation has led to research on the effective use of technology by older populations in an effort to engage them more productively and to assist them in leading independent lives. Ironically, not enough attention has been paid to the development of interaction design strategies that would actually enable older users to better exploit new technologies. Previous research suggests that if products are designed to reflect people's prior knowledge, they will appear intuitive to use. Since intuitive interfaces utilise domain-specific prior knowledge of users, they require minimal learning for effective interaction. However, older people are very diverse in their capabilities and domain-specific prior knowledge. In addition, ageing also slows down the process of acquiring new knowledge. Keeping these suggestions and limitations in view, the aim of this study was set to investigate possible approaches to developing interfaces that facilitate their intuitive use by older people. In this quest to develop intuitive interfaces for older people, two experiments were conducted that systematically investigated redundancy (the use of both text and icons) in interface design, complexity of interface structure (nested versus flat), and personal user factors such as cognitive abilities, perceived self-efficacy and technology anxiety. All of these factors could interfere with intuitive use. The results from the first experiment suggest that, contrary to what was hypothesised, older people (65+ years) completed the tasks on the text only based interface design faster than on the redundant interface design. The outcome of the second experiment showed that, as expected, older people took more time on a nested interface. However, they did not make significantly more errors compared with younger age groups. Contrary to what was expected, older age groups also did better under anxious conditions. The findings of this study also suggest that older age groups are more heterogeneous in their capabilities and their intuitive use of contemporary technological devices is mediated more by domain-specific technology prior knowledge and by their cognitive abilities, than chronological age. This makes it extremely difficult to develop product interfaces that are entirely intuitive to use. However, by keeping in view the cognitive limitations of older people when interfaces are developed, and using simple text-based interfaces with flat interface structure, would help them intuitively learn and use complex technological products successfully during early encounter with a product. These findings indicate that it might be more pragmatic if interfaces are designed for intuitive learning rather than for intuitive use. Based on this research and the existing literature, a model for adaptable interface design as a strategy for developing intuitively learnable product interfaces was proposed. An adaptable interface can initially use a simple text only interface to help older users to learn and successfully use the new system. Over time, this can be progressively changed to a symbols-based nested interface for more efficient and intuitive use.
Resumo:
Driven by the rapid development of ubiquitous and pervasive computing, personalized services and applications are deployed to support our lives. Accordingly, the number of interfaces and devices (smartphone, tablet computer, etc.) provided to access and consume these services is growing continuously. To simplify the complexity of managing many accounts with different credentials, Single Sign-On (SSO) solutions have been introduced. However, a single password for many accounts represents a single-point-of-failure. Furthermore, once initiated SSO session is a high potential risk when the working station is left unlocked and unattended. In this paper, we present a conception of a Persistent Single Sign-On (PSSO) for ubiquitous home environments by involving the capabilities of Behavioral Biometrics to check the identity of the user continuously in an unobtrusive manner.
Resumo:
The IEEE Wireless LAN standard has been a true success story by enabling convenient, efficient and low-cost access to broadband networks for both private and professional use. However, the increasing density and uncoordinated operation of wireless access points, combined with constantly growing traffic demands have started hurting the users' quality of experience. On the other hand, the emerging ubiquity of wireless access has placed it at the center of attention for network attacks, which not only raises users' concerns on security but also indirectly affects connection quality due to proactive measures against security attacks. In this work, we introduce an integrated solution to congestion avoidance and attack mitigation problems through cooperation among wireless access points. The proposed solution implements a Partially Observable Markov Decision Process (POMDP) as an intelligent distributed control system. By successfully differentiating resource hampering attacks from overload cases, the control system takes an appropriate action in each detected anomaly case without disturbing the quality of service for end users. The proposed solution is fully implemented on a small-scale testbed, on which we present our observations and demonstrate the effectiveness of the system to detect and alleviate both attack and congestion situations.
Resumo:
Three dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in-depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 3D approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment, cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made, suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World, namely age-related macular degeneration (AMD).
Resumo:
Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
This paper aims to inform design strategies for smart space technology to enhance libraries as environments for co-working and informal social learning. The focus is on understanding user motivations, behaviour, and activities in the library when there is no programmed agenda. The study analyses gathered data over five months of ethnographic research at ‘The Edge’ – a bookless library space at the State Library of Queensland in Brisbane, Australia, that is explicitly dedicated to co-working, social learning, peer collaboration, and creativity around digital culture and technology. The results present five personas that embody people’s main usage patterns as well as motivations, attitudes, and perceived barriers to social learning. It appears that most users work individually or within pre-organised groups, but usually do not make new connections with co-present, unacquainted users. Based on the personas, four hybrid design dimensions are suggested to improve the library as a social interface for shared learning encounters across physical and digital spaces. The findings in this paper offer actionable knowledge for managers, decision makers, and designers of technology-enhanced library spaces and similar collaboration and co-working spaces.
Resumo:
There are different ways to authenticate humans, which is an essential prerequisite for access control. The authentication process can be subdivided into three categories that rely on something someone i) knows (e.g. password), and/or ii) has (e.g. smart card), and/or iii) is (biometric features). Besides classical attacks on password solutions and the risk that identity-related objects can be stolen, traditional biometric solutions have their own disadvantages such as the requirement of expensive devices, risk of stolen bio-templates etc. Moreover, existing approaches provide the authentication process usually performed only once initially. Non-intrusive and continuous monitoring of user activities emerges as promising solution in hardening authentication process: iii-2) how so. behaves. In recent years various keystroke dynamic behavior-based approaches were published that are able to authenticate humans based on their typing behavior. The majority focuses on so-called static text approaches, where users are requested to type a previously defined text. Relatively few techniques are based on free text approaches that allow a transparent monitoring of user activities and provide continuous verification. Unfortunately only few solutions are deployable in application environments under realistic conditions. Unsolved problems are for instance scalability problems, high response times and error rates. The aim of this work is the development of behavioral-based verification solutions. Our main requirement is to deploy these solutions under realistic conditions within existing environments in order to enable a transparent and free text based continuous verification of active users with low error rates and response times.
Resumo:
This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.
Resumo:
This book develops tools and techniques that will help urban residents gain access to urban computing. Metaphorically speaking, it is taking computing to the street by giving the general public – rather than just researchers and professionals – the power to leverage available city infrastructure and create solutions tailored to their individual needs. It brings together five chapters that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction Conference (OZCHI 2009). This book focuses on applying urban informatics, urban and community sensing and open application programming interfaces (APIs) to the public space through the delivery of online services, on demand and in real time. It then offers a case study of how the city of Singapore has harnessed the potential of an online infrastructure so that residents and visitors can access services electronically. This book was published as a special issue of the Journal of Urban Technology, 19(2), 2012.
Resumo:
The Australian Business Assessment of Computer User Security (ABACUS) survey is a nationwide assessment of the prevalence and nature of computer security incidents experienced by Australian businesses. This report presents the findings of the survey which may be used by businesses in Australia to assess the effectiveness of their information technology security measures.
Resumo:
Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.