897 resultados para 300302 Plant Growth and Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Over recent years, mounting evidence led to the widely accepted concept that plant hormone action is not the read-out of linear pathways, but determined by the extensive combinatorial activity of the signaling molecules and the integration of their signaling pathways, both in terms of regulating growth and development and in adapting to external stimuli. Recent work is beginning to shed light on the crosstalk of both nominally synergistically and antagonistically acting plant hormones such as, for example, auxins with oxylipins. Here, we report that oxylipins directly contribute to the regulation of the expression of two Arabidopsis YUCCA (YUC) genes, YUC8 and YUC9. Similar to previously characterized YUC family members, we identify both YUC8 and YUC9 as involved in local auxin biosynthesis, as demonstrated by the altered auxin contents and auxin-dependent phenotypes displayed by loss-of function mutants and transgenic overexpressing lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. The microscopic data indicate a functional overlap of the two analyzed auxin biosynthesis genes, but also point out specific functions for YUC8 and YUC9, which are in part related to different spatio-temporal expression pattern. In support of these findings, the analyzed yuc knockout mutants had lower free auxin contents and displayed a reduced response to oxylipins. This work provides evidence of a molecular mechanism that links oxylipin signaling with auxin homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant diseases represent a major economic and environmental problem in agriculture and forestry. Upon infection, a plant develops symptoms that affect different parts of the plant causing a significant agronomic impact. As many such diseases spread in time over the whole crop, a system for early disease detection can aid to mitigate the losses produced by the plant diseases and can further prevent their spread [1]. In recent years, several mathematical algorithms of search have been proposed [2,3] that could be used as a non-invasive, fast, reliable and cost-effective methods to localize in space infectious focus by detecting changes in the profile of volatile organic compounds. Tracking scents and locating odor sources is a major challenge in robotics, on one hand because odour plumes consists of non-uniform intermittent odour patches dispersed by the wind and on the other hand because of the lack of precise and reliable odour sensors. Notwithstanding, we have develop a simple robotic platform to study the robustness and effectiveness of different search algorithms [4], with respect to specific problems to be found in their further application in agriculture, namely errors committed in the motion and sensing and to the existence of spatial constraints due to land topology or the presence of obstacles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualmente, la gestión de sistemas de Manejo Integrado de Plagas (MIP) en cultivos hortícolas tiene por objetivo priorizar los métodos de control no químicos en detrimento del consumo de plaguicidas, según recoge la directiva europea 2009/128/CE ‘Uso Sostenible de Plaguicidas’ (OJEC, 2009). El uso de agentes de biocontrol como alternativa a la aplicación de insecticidas es un elemento clave de los sistemas MIP por sus innegables ventajas ambientales que se utiliza ampliamente en nuestro país (Jacas y Urbaneja, 2008). En la región de Almería, donde se concentra el 65% de cultivo en invernadero de nuestro país (47.367 ha), MIP es la principal estrategia en pimiento (MAGRAMA, 2014), y comienza a serlo en otros cultivos como tomate o pepino. El cultivo de pepino, con 8.902 ha (MAGRAMA, 2013), tiene un protocolo semejante al pimiento (Robledo et al., 2009), donde la única especie de pulgón importante es Aphis gossypii Glover. Sin embargo, pese al continuo incremento de la superficie de cultivo agrícola bajo sistemas MIP, los daños originados por virosis siguen siendo notables. Algunos de los insectos presentes en los cultivos de hortícolas son importantes vectores de virus, como los pulgones, las moscas blancas o los trips, cuyo control resulta problemático debido a su elevada capacidad para transmitir virus vegetales incluso a una baja densidad de plaga (Holt et al., 2008; Jacas y Urbaneja, 2008). Las relaciones que se establecen entre los distintos agentes de un ecosistema son complejas y muy específicas. Se ha comprobado que, pese a que los enemigos naturales reducen de manera beneficiosa los niveles de plaga, su incorporación en los sistemas planta-insecto-virus puede desencadenar complicadas interacciones con efectos no deseables (Dicke y van Loon, 2000; Jeger et al., 2011). Así, los agentes de biocontrol también pueden inducir a que los insectos vectores modifiquen su comportamiento como respuesta al ataque y, con ello, el grado de dispersión y los patrones de distribución de las virosis que transmiten (Bailey et al., 1995; Weber et al., 1996; Hodge y Powell, 2008a; Hodge et al., 2011). Además, en ocasiones el control biológico por sí solo no es suficiente para controlar determinadas plagas (Medina et al., 2008). Entre los métodos que se pueden aplicar bajo sistemas MIP están las barreras físicas que limitan la entrada de plagas al interior de los invernaderos o interfieren con su movimiento, como pueden ser las mallas anti-insecto (Álvarez et al., 2014), las mallas fotoselectivas (Raviv y Antignus, 2004; Weintraub y Berlinger, 2004; Díaz y Fereres, 2007) y las mallas impregnadas en insecticida (Licciardi et al., 2008; Martin et al., 2014). Las mallas fotoselectivas reducen o bloquean casi por completo la transmisión de radiación UV, lo que interfiere con la visión de los insectos y dificulta o impide la localización del cultivo y su establecimiento en el mismo (Raviv y Antignus, 2004; Weintraub, 2009). Se ha comprobado cómo su uso puede controlar los pulgones y las virosis en cultivo de lechuga (Díaz et al., 2006; Legarrea et al., 2012a), así como la mosca blanca, los trips y los ácaros, y los virus que estos transmiten en otros cultivos (Costa y Robb, 1999; Antignus et al., 2001; Kumar y Poehling, 2006; Doukas y Payne, 2007a; Legarrea et al., 2010). Sin embargo, no se conoce perfectamente el modo de acción de estas barreras, puesto que existe un efecto directo sobre la plaga y otro indirecto mediado por la planta, cuya fisiología cambia al desarrollarse en ambientes con falta de radiación UV, y que podría afectar al ciclo biológico de los insectos fitófagos (Vänninen et al., 2010; Johansen et al., 2011). Del mismo modo, es necesario estudiar la compatibilidad de esta estrategia con los enemigos naturales de las plagas. Hasta la fecha, los estudios han evidenciado que los agentes de biocontrol pueden realizar su actividad bajo ambientes pobres en radiación UV (Chyzik et al., 2003; Chiel et al., 2006; Doukas y Payne, 2007b; Legarrea et al., 2012c). Otro método basado en barreras físicas son las mallas impregnadas con insecticidas, que se han usado tradicionalmente en la prevención de enfermedades humanas transmitidas por mosquitos (Martin et al., 2006). Su aplicación se ha ensayado en agricultura en ciertos cultivos al aire libre (Martin et al., 2010; Díaz et al., 2004), pero su utilidad en cultivos protegidos para prevenir la entrada de insectos vectores en invernadero todavía no ha sido investigada. Los aditivos se incorporan al tejido durante el proceso de extrusión de la fibra y se liberan lentamente actuando por contacto en el momento en que el insecto aterriza sobre la malla, con lo cual el riesgo medioambiental y para la salud humana es muy limitado. Los plaguicidas que se emplean habitualmente suelen ser piretroides (deltametrina o bifentrín), aunque también se ha ensayado dicofol (Martin et al., 2010) y alfa-cipermetrina (Martin et al., 2014). Un factor que resulta de vital importancia en este tipo de mallas es el tamaño del poro para facilitar una buena ventilación del cultivo, al tiempo que se evita la entrada de insectos de pequeño tamaño como las moscas blancas (Bethke y Paine, 1991; Muñoz et al., 1999). Asimismo, se plantea la necesidad de estudiar la compatibilidad de estas mallas con los enemigos naturales. Es por ello que en esta Tesis Doctoral se plantea la necesidad de evaluar nuevas mallas impregnadas que impidan el paso de insectos de pequeño tamaño al interior de los invernaderos, pero que a su vez mantengan un buen intercambio y circulación de aire a través del poro de la malla. Así, en la presente Tesis Doctoral, se han planteado los siguientes objetivos generales a desarrollar: 1. Estudiar el impacto de la presencia de parasitoides sobre el grado de dispersión y los patrones de distribución de pulgones y las virosis que éstos transmiten. 2. Conocer el efecto directo de ambientes pobres en radiación UV sobre el comportamiento de vuelo de plagas clave de hortícolas y sus enemigos naturales. 3. Evaluar el efecto directo de la radiación UV-A sobre el crecimiento poblacional de pulgones y mosca blanca, y sobre la fisiología de sus plantas hospederas, así como el efecto indirecto de la radiación UV-A en ambas plagas mediado por el crecimiento de dichas planta hospederas. 4. Caracterización de diversas mallas impregnadas en deltametrina y bifentrín con diferentes propiedades y selección de las óptimas para el control de pulgones, mosca blanca y sus virosis asociadas en condiciones de campo. Estudio de su compatibilidad con parasitoides. ABSTRACT Insect vectors of plant viruses are the main agents causing major economic losses in vegetable crops grown under protected environments. This Thesis focuses on the implementation of new alternatives to chemical control of insect vectors under Integrated Pest Management programs. In Spain, biological control is the main pest control strategy used in a large part of greenhouses where horticultural crops are grown. The first study aimed to increase our knowledge on how the presence of natural enemies such as Aphidius colemani Viereck may alter the dispersal of the aphid vector Aphis gossypii Glover (Chapter 4). In addition, it was investigated if the presence of this parasitoid affected the spread of aphid-transmitted viruses Cucumber mosaic virus (CMV, Cucumovirus) and Cucurbit aphid-borne yellows virus (CABYV, Polerovirus) infecting cucumber (Cucumis sativus L). SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersal in the short term, which enhanced CMV spread, though consequences of parasitism suggested potential benefits for disease control in the long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV in the long term. The flight activity of pests Myzus persicae (Sulzer), Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick), and natural enemies A. colemani and Sphaerophoria rueppellii (Weidemann) under UV-deficient environments was studied under field conditions (Chapter 5). One-chamber tunnels were covered with cladding materials with different UV transmittance properties. Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets were located at different distances from the platform. The ability of aphids and whiteflies to reach their targets was diminished under UV-absorbing barriers, suggesting a reduction of vector activity under this type of nets. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of the tunnels covered with non-UV blocking materials. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. The oviposition of lepidopteran T. absoluta was also negatively affected by a UV-absorbing cover. The photoselective barriers were compatible with parasitism and oviposition of biocontrol agents. Apart from the direct response of insects to UV radiation, plant-mediated effects influencing insect performance were investigated (Chapter 6). The impact of UV-A radiation on the performance of aphid M. persicae and whitefly B. tabaci, and growth and leaf physiology of host plants pepper and eggplant was studied under glasshouse conditions. Plants were grown inside cages covered by transparent and UV-A-opaque plastic films. Plant growth and insect fitness were monitored. Leaves were harvested for chemical analysis. Pepper plants responded directly to UV-A by producing shorter stems whilst UV-A did not affect the leaf area of either species. UV-A-treated peppers had higher content of secondary metabolites, soluble carbohydrates, free amino acids and proteins. Such changes in tissue chemistry indirectly promoted aphid performance. For eggplants, chlorophyll and carotenoid levels decreased with supplemental UVA but phenolics were not affected. Exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues, as compounds implied in pest nutrition were unaltered. Lastly, the efficacy of a wide range of Long Lasting Insecticide Treated Nets (LLITNs) was studied under laboratory and field conditions. This strategy aimed to prevent aphids and whiteflies to enter the greenhouse by determining the optimum mesh size (Chapter 7). This new approach is based on slow release deltamethrin- and bifenthrin-treated nets with large hole sizes that allow improved ventilation of greenhouses. All LLITNs produced high mortality of M. persicae and A. gossypii although their efficacy decreased over time with sun exposure. It was necessary a net with hole size of 0.29 mm2 to exclude B. tabaci under laboratory conditions. The feasibility of two selected nets was studied in the field under a high insect infestation pressure in the presence of CMV- and CABYV-infected cucumber plants. Besides, the compatibility of parasitoid A. colemani with bifenthrin-treated nets was studied in parallel field experiments. Both nets effectively blocked the invasion of aphids and reduced the incidence of both viruses, however they failed to exclude whiteflies. We found that our LLITNs were compatible with parasitoid A. colemani. As shown, the role of natural enemies has to be taken into account regarding the dispersal of insect vectors and subsequent spread of plant viruses. The additional benefits of novel physicochemical barriers, such as photoselective and insecticide-impregnated nets, need to be considered in Integrated Pest Management programs of vegetable crops grown under protected environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal connections are arranged topographically such that the spatial organization of neurons is preserved by their termini in the targets. During the development of topographic projections, axons initially explore areas much wider than the final targets, and mistargeted axons are pruned later. The molecules regulating these processes are not known. We report here that the ligands of the Eph family tyrosine kinase receptors may regulate both the initial outgrowth and the subsequent pruning of axons. In the presence of ephrins, the outgrowth and branching of the receptor-positive hippocampal axons are enhanced. However, these axons are induced later to degenerate. These observations suggest that the ephrins and their receptors may regulate topographic map formation by stimulating axonal arborization and by pruning mistargeted axons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulated production of nitric oxide (NO) has been implicated in the development of certain human diseases, including cancer. We sought to assess the damaging potential of NO produced under long-term conditions through the development of a suitable model cell culture system. In this study, we report that when murine macrophage-like RAW264.7 cells were exposed continuously to bacterial lipopolysaccharide (LPS) or mouse recombinant interferon-γ (IFN-γ) over periods of 21–23 days, they continued to grow, but with doubling times 2 to 4 times, respectively, longer than the doubling time of unstimulated cells. Stimulated cells produced NO at rates of 30 to 70 nmol per million cells per day throughout the stimulation period. Within 24 hr after removal of stimulant, cells resumed exponential growth. Simultaneous exposure to LPS and IFN-γ resulted in decreased cell number, which persisted for 2 days after removal of the stimulants. Exponential growth was attained only after an additional 4 days. Addition of N-methyl-l-arginine (NMA), an NO synthase inhibitor, to the medium inhibited NO production by 90% of all stimulated cells, partially reduced doubling time of cells stimulated with LPS or IFN-γ, and partially increased viability and growth rates in those exposed to both LPS and IFN-γ. However, when incubated with LPS and IFN-γ at low densities both in the presence and in the absence of NMA, cells grew at a rate slower than that of unstimulated cells, with no cell death, and they resumed exponential growth 24 hr after removal of stimulants. Results from cell density experiments suggest that macrophages are protected from intracellularly generated NO; much of the NO damaging activity occurred outside of the producer cells. Collectively, results presented in this study suggest that the type of cellular toxicity observed in macrophages is markedly influenced by rate of exposure to NO: at low rates of exposure, cells exhibit slower growth; at higher rates, cells begin to die; at even higher rates, cells undergo growth arrest or die. The ability of RAW264.7 cells to produce NO over many cell generations makes the cell line a useful system for the study of other aspects of cellular damage, including genotoxicity, resulting from exposure to NO under long-term conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous thyroid hormone (TH) induces premature differentiation of the zebrafish pectoral fins, which are analogous to the forelimbs of tetrapods. It accelerates the growth of the pelvic fins but not precociously. Goitrogens, which are chemical inhibitors of TH synthesis by the thyroid gland, inhibit the transition from larva to juvenile fish including the formation of scales, and pigment pattern; they stunt the growth of both pectoral and pelvic paired fins. Inhibition by goitrogens is rescued by the simultaneous addition of thyroxine. The effect of adding TH to the rearing water of the postembryonic Mexican axolotl was reinvestigated under conditions that permit continued growth and development. In addition to morphological changes that have been described, TH greatly stimulates axolotl limb growth causing the resulting larva to be proportioned as an adult in about two months. This study extends the known evolutionary relatedness of tetrapod limbs and fish fins to include the TH stimulation of salamander limb and zebrafish fin growth, and suggests that TH is required to complete the life cycle of a typical bony fish and a salamander at the same developmental stage that it controls anuran and flounder metamorphosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA ligase IV (Lig4) and the DNA-dependent protein kinase (DNA-PK) function in nonhomologous end joining (NHEJ). However, although Lig4 deficiency causes late embryonic lethality, deficiency in DNA-PK subunits (Ku70, Ku80, and DNA-PKcs) does not. Here we demonstrate that, similar to p53 deficiency, ataxia-telangiectasia-mutated (ATM) gene deficiency rescues the embryonic lethality and neuronal apoptosis, but not impaired lymphocyte development, associated with Lig4 deficiency. However, in contrast to p53 deficiency, ATM deficiency enhances deleterious effects of Lig4 deficiency on growth potential of embryonic fibroblasts (MEFs) and genomic instability in both MEFs and cultured progenitor lymphocytes, demonstrating significant differences in the interplay of p53 vs. ATM with respect to NHEJ. Finally, in dramatic contrast to effects on Lig4 deficiency, ATM deficiency causes early embryonic lethality in Ku- or DNA-PKcs-deficient mice, providing evidence for an NHEJ-independent role for the DNA-PK holoenzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Δ mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Δ mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39°C and induced thermotolerance at 50°C. The osmosensitive phenotype of the yeast tps1Δ mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the direct effects of photosynthesis on allocation of biomass by altering photosynthesis without altering leaf N or nitrate content, phosphoribulokinase (PRK) activity was decreased in transgenic tobacco (Nicotiana tabacum L.) with an inverted tobacco PRK cDNA and plants were grown at different N levels (0.4 and 5 mm NH4NO3). The activation state of PRK increased as the amount of enzyme was decreased genetically at both levels of N. At high N a 94% decrease in PRK activity had only a small effect (20%) on photosynthesis and growth. At low N a 94% decrease in PRK activity had a greater effect on leaf photosynthesis (decreased by up to 50%) and whole-plant photosynthesis (decreased by up to 35%) than at high N. These plants were up to 35% smaller than plants with higher PRK activities because they had less structural dry matter and less starch, which was decreased by 3- to 4-fold, but still accumulated to 24% to 31% of dry weight; young leaves contained more starch than older leaves in older plants. Leaves had a higher ion and water content, and specific leaf area was higher, but allocation between shoot and root was unaltered. In conclusion, low N in addition to a 94% decrease in PRK by antisense reduces the activity of PRK sufficient to diminish photosynthesis, which limits biomass production under conditions normally considered sink limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.