954 resultados para 250300 Organic Chemistry
Resumo:
The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics. In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.
Resumo:
Concept maps are a technique used to obtain a visual representation of a person's ideas about a concept or a set of related concepts. Specifically, in this paper, through a qualitative methodology, we analyze the concept maps proposed by 52 groups of teacher training students in order to find out the characteristics of the maps and the degree of adequacy of the contents with regard to the teaching of human nutrition in the 3rd cycle of primary education. The participants were enrolled in the Teacher Training Degree majoring in Primary Education, and the data collection was carried out through a training activity under the theme of what to teach about Science in Primary School? The results show that the maps are a useful tool for working in teacher education as they allow organizing, synthesizing, and communicating what students know. Moreover, through this work, it has been possible to see that future teachers have acceptable skills for representing the concepts/ideas in a concept map, although the level of adequacy of concepts/ideas about human nutrition and its relations is usually medium or low. These results are a wake-up call for teacher training, both initial and ongoing, because they shows the inability to change priorities as far as the selection of content is concerned.
Resumo:
The racemic tertiary cathinones N,N-dimethylcathinone (1), N,N-diethylcathinone (2) and 2-(1-pyrrolidinyl)-propiophenone (3) have been prepared in reasonable yield and characterized using NMR and mass spectroscopy. HPLC indicates that these compounds are isolated as the anticipated racemic mixture. These can then be co-crystallized with (+)-O,O′-di-p-toluoyl-d-tartaric, (+)-O,O′-dibenzoyl-d-tartaric and (-)-O,O′-dibenzoyl-l-tartaric acids giving the single enantiomers S and R respectively of 1, 2 and 3, in the presence of sodium hydroxide through a dynamic kinetic resolution. X-ray structural determination confirmed the enantioselectivity. The free amines could be obtained following basification and extraction. In methanol these are reasonably stable for the period of several hours, and their identity was confirmed by HPLC and CD spectroscopy.
Resumo:
Herein we describe the design and synthesis of a redox-dependent single-molecule switch. Appending a ferrocene unit to a diphenylacetylene scaffold gives a redox-sensitive handle, which undergoes reversible one-electron oxidation, as demonstrated by cyclic voltammetry analysis. 1H-NMR spectroscopy of the partially oxidized switch and control compounds suggests that oxidation to the ferrocenium cation induces a change in hydrogen bonding interactions that results in a conformational switch.
Resumo:
The major part of this thesis concerns the development of catalytic methodologies based on palladium nanoparticles immobilized on aminopropyl-functionalized siliceous mesocellular foam (Pd0-AmP-MCF). The catalytic activity of the precursor to the nanocatalyst, PdII-AmP-MCF is also covered by this work. In the first part the application of Pd0-AmP-MCF in Suzuki-Miyaura cross-coupling reactions and transfer hydrogenation of alkenes under microwave irradiation is described. Excellent reactivity was observed and a broad range of substrates were tolerated for both transformations. The Pd0-AmP-MCF exhibited high recyclability as well as low metal leaching in both cases. The aim of the second part was to evaluate the catalytic efficiency of the closely related PdII-AmP-MCF for cycloisomerization of various acetylenic acids. The catalyst was able to promote formation of lactones under mild conditions using catalyst loadings of 0.3 - 0.5 mol% at temperatures of up to 50 oC in the presence of Et3N. By adding 1,4-benzoquinone to the reaction, the catalyst could be recycled four times without any observable decrease in the activity. The selective arylation of indoles at the C-2 position using Pd-AmP-MCF and symmetric diaryliodonium salts is presented in the third part. These studies revealed that Pd0-AmP-MCF was more effective than PdII-AmP-MCF for this transformation. Variously substituted indoles as well as diaryliodonium salts were tolerated, giving arylated indoles in high yields within 15 h at 20 - 50 oC in H2O. Only very small amounts of Pd leaching were observed and in this case the catalyst exhibited moderate recyclability. The final part of the thesis describes the selective hydrogenation of the C=C in different α,β-unsaturated systems. The double bond was efficiently hydrogenated in high yields both under batch and continuous-flow conditions. High recyclability and low metal leaching were observed in both cases.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Cubane is a peculiar cube-shaped alkane molecule with a rigid, regular structure. This makes it a good scaffold, i.e. a molecular platform to which the substituents are arranged in a specific and fixed orientation. Moreover, cubane has a body diagonal of 2.72 Å, very similar to the distance across the benzene ring, i.e. 2.79 Å. Thus, it would be possible to use cubane as a scaffold in medicinal and material chemistry as a benzene isostere 1,2. This could lead to advantages in terms of solubility and toxicity and could provide novel properties. For this purpose, the possibility of performing “modern organic chemistry” on the cubane scaffold has to be studied. This project was entirely carried out in the framework of the Erasmus+ mobility programme at the Trinity College (Dublin, IRL) under the supervision of prof. M. O. Senge. The main goal of this project was to widen the knowledge on cubane chemistry. In particular, it was decided to test reactions that were never applied to the scaffold before, such as metathesis of 4-iodo-1-vinylcubane and Stetter reaction of 1-iodocubane-4-carboxaldehyde. These two molecules were synthesized in 10 and 9 steps respectively from commercially available cyclopentanone, following a known procedure. Unfortunately, metathesis with different olefins, such as styrene, α,β unsaturated compounds and linear α-olefins failed under different conditions, highlighting cubane behaves as a Type IV, challenging olefin under metathesis conditions. Even the employment of a specific catalyst for hindered olefins failed in the cross-coupling with linear α-olefins. On the other hand, two new molecules were synthesized via Stetter reaction and benzoin condensation respectively. Even if the majority of the reactions were not successful, this work can be seen as an inspiration for further investigation on cubane chemistry, as new questions were raised and new opportunities were envisioned.
Resumo:
Resumo:
The intrinsic gas-phase reactivity of cyclic N-acyliminium ions in Mannich-type reactions with the parent enol silane, vinyloxytrimethylsilane, has been investigated by double- and triple-stage pentaquadrupole mass spectrometric experiments. Remarkably distinct reactivities are observed for cyclic N-acyliminium ions bearing either endocyclic or exocyclic carbonyl groups. NH-Acyliminium ions with endocyclic carbonyl groups locked in s-trans forms participate in a novel tandem N-acyliminium ion reaction: the nascent adduct formed by simple addition is unstable and rearranges by intramolecular trimethylsilyl cation shift to the ring nitrogen, and an acetaldehyde enol molecule is eliminated. An NSi(CH3)3-acyliminium ion is formed, and this intermediate ion reacts with a second molecule of vinyloxytrimethylsilane by simple addition to form a stable acyclic adduct. N-Acyl and N,N-diacyliminium ions with endocyclic carbonyl groups, for which the s-cis conformation is favored, react distinctively by mono polar [4+ + 2] cycloaddition yielding stable, ressonance-stabilized cycloadducts. Product ions were isolated via mass-selection and structurally characterized by triple-stage mass spectrometric experiments. B3LYP/6-311G(d,p) calculations corroborate the proposed reaction mechanisms.
Resumo:
he intrinsic gas-phase reactivity of cyclic N-alkyl- and N-acyliminium ions toward addition of allyltrimethylsilane (ATMS) has been compared using MS2 and MS3 pentaquadrupole mass spectrometric experiments. An order of electrophilic reactivity has been derived and found to agree with orders of overall reactivity in solution. The prototype five-membered ring N-alkyliminium ion 1a and its N-CH3 analogue 1b, as well as their six-membered ring analogues 1c and 1d, lack N-acyl activation and they are, accordingly, inert toward ATMS addition. The five- and six-membered ring N-acyliminium ions with N-COCH3 exocycclic groups, 3a and 3b, respectively, are also not very reactive. The N-acyliminium ions 2a and 2c, with s-trans locked endocyclic N-carbonyl groups, are the most reactive followed closely by 3c and 3d with exocyclic (and unlocked) N-CO2CH3 groups. The five-membered ring N-acyliminium ions are more reactive than their six-membered ring analogues, that is: 2a > 2c and 3c > 3d. In contrast with the high reactivity of 2a, its N-CH3 analogue 2b is inert toward ATMS addition. For the first time, the transient intermediates of a Mannich-type condensation reaction were isolatedthe β-silyl cations formed by ATMS addition to N-acyliminium ionsand their intrinsic gas-phase behavior toward dissociation and reaction with a nucleophile investigated. When collisionally activated, the β-silyl cations dissociate preferentially by Grob fragmentation, that is, by retro-addition. With pyridine, they react competitively and to variable extents by proton transfer and by trimethylsilylium ion abstractionthe final and key step postulated for α-amidoalkylation. Becke3LYP/6-311G(d,p) reaction energetics, charge densities on the electrophilic C-2 site, and AM1 LUMO energies have been used to rationalize the order of intrinsic gas-phase electrophilic reactivity of cyclic iminium and N-acyliminium ions.
Resumo:
Estrogens can be labeled with the positron-emitting radionuclide fluorine-18 (t$\sb{1/2}$ = 110 min) by fluoride ion (n-Bu$\sb4$N$\sp{18}$F) displacement of a 16$\beta$-trifluoromethanesulfonate (triflate) derivative of the corresponding estrone 3-triflate, and purification by HPLC. That sequence has been used to synthesize the 11$\beta$-methoxy 1 and 11$\beta$-ethyl 2 analogues of the breast tumor imaging agent, 16$\alpha$-($\sp{18}$F) fluoro-17$\beta$-estradiol (FES). Tissue distribution studies of 1 and 2 in immature female rats show high selectivity for target tissue (T, uterus) vs non-target (NT, muscle and lung), with T/NT ratios being 43 and 17 at one hour after injection for 1 and 2, respectively. The parent estrogen FES has previously been shown to display an intermediate value for tissue selectivity.
Resumo:
The photodenitrogenation of vinyl azides to 2H-azirines by using a photoflow reactor is reported and compared with thermal formation of 2H-azirines. Photochemically, the ring of the 2H-azirines was opened to yield the nitrile ylides, which underwent a [3 + 2]-cycloaddition with 1,3-dipolarophiles. When diisopropyl azodicarboxylate serves as the dipolarophile, 1,3,4-triazoles become directly accessible starting from the corresponding vinyl azide. © 2013 Cludius-Brandt et al.
Resumo:
The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.
Resumo:
Crystalline acid-functionalized metal phosphonates are potential candidates as proton conducting electrolytes. Their frameworks can be chemically modified to contain proton carriers such as acidic groups (P-OH; -SO3H, -COOH,…) and guest molecules (H2O, NH3,…) that generates hydrogen bond networks stable in a wide range of temperature [1,2]. In this work, focus is laid on properties derived from the combination of lanthanide ions with the amino-sulfophosphonate ligand (H2O3PCH2)2-N-(CH2)2-SO3H. Hightrough-put screening was followed to reach the optimal synthesis conditions under solvothermal conditions at 140 ºC. Isolated polycrystalline solids, Ln[(O3PCH2)2-NH-(CH2)2-SO3H].2H2O (Ln= La, Pr and Sm), crystallize in the monoclinic (La) and orthorhombic (Pr and Sm) systems with unit cell volume of ~2548 Å3. Preliminary proton conductivity measurements for Sm derivative have been carried out between 25º and 80 ºC at relative humidity (RH) values of 70 % and 95 %. The sample exhibits enhanced conductivity at high RH and T (Figure 1) and constant activation energies of 0.4 eV, typical of a Grothuss mechanism of proton.
Resumo:
Crystalline metal phosphonates may offer acidic sites, structural flexibility and guest molecules (H2O, heterocyclics, etc.) which can act as proton carriers. In addition, some frameworks are also amenable for post‐synthesis modifications in order to enhance desired properties [1,2]. In this work, we present the synthesis and structural characterization of two hydroxyphosphonoacetates hybrids based on magnesium, [Mg5(O3PCHOHCOO)2(HO3PCHOHCOO)2·8H2O] [Mg5(HPAA)2(H1HPAA)2·8H2O], and zinc, [Zn6K(O3PCHOHCOO)4(OH)·6.5H2O] [Zn6K(HPAA)4(OH)·6.5H2O]. Both solids present three-dimensional frameworks and their crystal structures were solved ab initio from X-ray powder diffraction. The proton conductivity of [Zn6K(HPAA)4(OH)·6.5H2O] as well as ammonia derivatives of M(II)(HO3PCHOHCOO)·2H2O [M(II)=Zn, Mg] will be reported and discussed.