709 resultados para 13077-072
Resumo:
We examine the quantitative composition of benthic foraminiferal assemblages of Rose Bengal-stained surface samples from 37 stations in the Laptev Sea, and combine this data set with an existing data set along a transect from Spitsbergen to the central Arctic Ocean. Foraminiferal test accumulation rates, diversity, faunal composition and statistically defined foraminiferal associations are analysed for living (Rose Bengal-stained) and dead foraminifers. We compare the results of several benthic foraminiferal diversity indices and statistically defined foraminiferal associations, including Fisher's alpha and Shannon-Wiener diversity indices, Q-mode principal component analysis and correspondence analysis. Diversity and faunal density (standing stock) of living benthic foraminifers are positively correlated to trophic resources. In contrast, the accumulation rate of dead foraminifers (BFAR) shows fluctuating values depending on test disintegration processes. Foraminiferal associations defined by Q-mode principal component analysis and correspondence analysis are comparable. The factor values of the correspondence analysis allow a quantitative correlation between the foraminiferal fauna and the local carbon flux, which may be used as a tool to estimate changes in primary productivity.
Resumo:
Transects of a Remotely Operated Vehicle (ROV) providing sea-bed videos and photographs were carried out during POLARSTERN expedition ANT-XV/3 focussing on the ecology of benthic assemblages on the Antarctic shelf in the South-Eastern Weddell Sea. The ROV-system sprint 103 was equiped with two video- and one still camera, lights, flash-lights, compass, and parallel lasers providing a scale in the images, a tether-management system (TMS), a winch, and the board units. All cameras used the same main lense and could be tilted. Videos were recorded in Betacam-format and (film-)slides were made by decision of the scientific pilot. The latter were mainly made under the aspect to improve the identification of organisms depicted in the videos because the still photographs have a much higher optical resolution than the videos. In the photographs species larger than 3 mm, in the videos larger than 1 cm are recognisable and countable. Under optimum conditions the transects were strait; the speed and direction of the ROV were determined by the drift of the ship in the coastal current, since both, the ship and the ROV were used as a drifting system; the option to operate the vehicle actively was only used to avoide obstacles and to reach at best a distance of only approximately 30 cm to the sea-floor. As a consequence the width of the photographs in the foreground is approximately 50 cm. Deviations from this strategy resulted mainly from difficult ice- and weather conditions but also from high current velocity and local up-welling close to the sea-bed. The sea-bed images provide insights into the general composition of key species, higher systematic groups and ecological guilds. Within interdisciplinary approaches distributions of assemblages can be attributed to environmental conditions such as bathymetry, sediment characteristics, water masses and current regimes. The images also contain valuable information on how benthic species are associated to each other. Along the transects, small- to intermediate-scaled disturbances, e.g. by grounding icebergs were analysed and further impact to the entire benthic system by local succession of recolonisation was studied. This information can be used for models predicting the impact of climate change to benthic life in the Southern Ocean. All these approaches contribute to a better understanding of the fiunctioning of the benthic system and related components of the entire Antarctic marine ecosystem. Despite their scientific value the imaging methods meet concerns about the protection of sensitive Antarctic benthic systems since they are non-invasive and they also provide valuable material for education and outreach purposes.
Resumo:
The Arctic Ocean System is a key player regarding the climatic changes of Earth. Its highly sensitive ice Cover, the exchange of surface and deep water masses with the global ocean and the coupling with the atmosphere interact directly with global climatic changes. The output of cold, polar water and sea ice influences the production of deep water in the North Atlantic and controls the global ocean circulation ("the conveyor belt"). The Arctic Ocean is surrounded by the large Northern Hemisphere ice sheets which not only affect the sedimentation in the Arctic Ocean but also are supposed to induce the Course of glacials and interglacials. Terrigenous sediment delivered from the ice sheets by icebergs and meltwater as well as through sea ice are major components of Arctic Ocean sediments. Hence, the terrigenous content of Arctic Ocean sediments is an outstanding archive to investigate changes in the paleoenvironment. Glazigenic sediments of the Canadian Arctic Archipelago and surface samples of the Arctic Ocean and the Siberian shelf regions were investigated by means of x-ray diffraction of the bulk fraction. The source regions of distinct mineral compositions were to be deciphered. Regarding the complex circumpolar geology stable christalline shield rocks, active and ancient fold belts including magmatic and metamorphic rocks, sedimentary rocks and wide periglacial lowlands with permafrost provide a complete range of possible mineral combinations. Non- glaciated shelf regions mix the local input from a possible point source of a particular mineral combination with the whole shelf material and function as a sampler of the entire region draining to the shelf. To take this into account, a literature research was performed. Descriptions of outcropping lithologies and Arctic Ocean sediments were scanned for their mineral association. The analyses of glazigenic and shelf sediments yielded a close relationship between their mineral composition and the adjacent source region. The most striking difference between the circumpolar source regions is the extensive outcrop of carbonate rocks in the vicinity of the Canadian Arctic Archipelago and in N Greenland while siliciclastic sediments dominate the Siberian shelves. In the Siberian shelf region the eastern Kara Sea and the western Laptev Sea form a destinct region defined by high smectite, (clino-) pyroxene and plagioclase input. The source of this signal are the extensive outcrops of the Siberian trap basalt in the Putorana Plateau which is drained by the tributaries of the Yenissei and Khatanga. The eastern Laptev Sea and the East Siberian Sea can also be treated as one source region containing a feldspar, quartz, illite, mica, and chlorite asscciation combined with the trace minerals hornblende and epidote. Franz Josef Land provides a mineral composition rich in quartz and kaolinite. The diverse rock suite of the Svalbard archipelago distributes specific mineral compositions of highly metamorphic christalline rocks, dolomite-rich carbonate rocks and sedimentary rocks with a higher diagenetic potential manifested in stable newly built diagenetic minerals and high organic maturity. To reconstruct the last 30,000 years as an example of the transition between glacial and interglacial conditions a profile of sediment cores, recovered during the RV Polarstern" expedition ARK-VIIIl3 (ARCTIC '91), and additional sediment cores around Svalbard were investigated. Besides the mineralogy of different grain size fractions several additional sedimentological and organo-geochemical Parameterswere used. A detailed stratigraphic framework was achieved. By exploiting this data set changes in the mineral composition of the Eurasian Basin sediments can be related to climatic changes. Certain mineral compositions can even be associated with particular transport processes, e.g. the smectitel pyroxene association with sea ice transport from the eastern Kara Sea and the western Laptev Sea. Hence, it is possible to decipher the complex interplay between the influx of warm Atlantic waters into the Southwest of the Eurasian Basin, the waxing and waning of the Svalbard1Barents- Sea- and Kara-Sea-Ice-Sheets, the flooding of the Siberian shelf regions and the surface and deep water circulation. Until now the Arctic Ocean was assumed to be a rather stable System during the last 30,000 years which only switched from a completely ice covered situation during the glacial to seasonally Open waters during the interglacial. But this work using mineral assemblages of sediment cores in the vicinity of Svalbard revealed fast changes in the inflow of warm Atlantic water with the Westspitsbergen Current (< 1000 years), short periods of advances and retreats of the marine based Eurasian ice sheets (1000-3000 years), and short melting phases (400 years?). Deglaciation of the marine-based Eurasian and the land-based north American and Greenland ice sheets are not simultaneous. This thesis postulates that the Kara Sea Ice Sheet released an early meltwater signal prior to 15,000 14C years leading the Barents Sea Ice Sheet while the western land-based ice sheets are following later than 13,500 14C years. The northern Eurasian Basin records the shift between iceberg and sea-ice material derived from the Canadian Arctic Archipelago and N-Greenland and material transported by sea-ice and surface currents from the Siberian shelf region. The phasing of the deglaciation becomes very obvious using the dolomite and quartd phyllosilicate record. It is also supposed that the flooding of the Laptev Sea during the Holocene is manifested in a stepwise increase of sediment input at the Lomonosov Ridge between the Eurasian and Amerasian Basin. Depending on the strength of meltwater pulses from the adjacent ice sheets the Transpolar Drift can probably be relocated. These movements are traceable by the distribution of indicator minerals. Based on the outcome of this work the feasibility of bulk mineral determination can be qualified as excellent tool for paleoenvironmental reconstructions in the Arctic Ocean. The easy preparation and objective determination of bulk mineralogy provided by the QUAX software bears the potential to use this analyses as basic measuring method preceding more time consuming and highly specialised mineralogical investigations (e.g. clay mineralogy, heavy mineral determination).
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"September 1962."
Resumo:
"16 September 1985."