957 resultados para 079901 Agricultural Hydrology (Drainage Flooding Irrigation Quality etc)
Resumo:
Ria de Aveiro is a large and shallow lagoon on the west coast of Portugal (40º38’N, 8º45´W), characterized by a complex geometry. It includes large areas of intertidal flats and a network of narrow channels which are connected to the Atlantic by an artificial inlet. Tides are the main forcing of the hydrology and physical processes of the lagoon. The deeper areas near the inlet are characterized by strong marine influence through tidal inflow, with high values of current velocity (>1m/s) and tidal range (2–3 m at spring tides), while in remote shallow areas, the circulation and the sea water inflow are reduced. These remote areas are more influenced by fresh waters received from several rivers and several small streams. The Aveiro lagoon is a very important ecosystem but as been used as recipient for various kinds of anthropogenic wastes resulting from the high population density, urban activities and industrial development. One of the most important Portuguese industrial centre is located in the lagoon margins. Ria de Aveiro is a coastal lagoon under huge direct antropization. This system also suffers strong diffuse antropization. This work is related with diffuse antropization linked with chemical pollution which may lead to biological stress and collapse.
Resumo:
[EN] The presence of emerging contaminants has been previously described in reclaimed water and groundwater of Gran Canaria (Spain). Despite of the environmental risk associated to irrigation with reclaimed water (R), this practice is necessary considering sustainability of the hydrological cycle in semiarid zones, especially regarding agricultural activity. The aim of this study was: i) to analyse the evolution during two years of contaminants of emerging concern, priority substances (2008/105/EC) and heavy metals in reclaimed water (R) and in a volcanic aquifer in the NE of Gran Canaria where a golf course has been irrigated with R since 1976 and ii) to relate this presence with physicochemical water properties and hydrogeological media. Reclaimed water and groundwater (GW) were monitoring quarterly from July 2009 to September 2011. Sorption and degradation processes in soil account for more compounds being detected in R. Diazinon and chlorfenvinphos were detected always in R and terbuthylazine, terbutryn and diuron at 90% of frequency. Considering all the samples, the most frequent compounds were chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. Although their concentrations were frequently below 50 ngL-1, some contaminants, were occasionally detected at higher concentrations. Chlorpyrifos ethyl and diuron are priority substances detected frequently and at high concentrations so they must be included in monitoring studies. Geology and location seem to be related to the emerging compounds presence due to occasional contamination events (not related to R irrigation) and therefore not to an existence of a dangerous diffuse contamination level. Thus, it is preferable to select wells with less stable chemical water quality, in order to monitor the risk of emerging compounds presence. Considering the relationship between contaminant presence, chemical water quality, seasonal variation, hydrogeological characteristics and wells location we can conclude that chlorpyrifos ethyl and diuron were the most dangerous priority substances in terms of GW quality so they must be included in all of the monitoring studies, at least in Canary Islands.
Resumo:
The human movement analysis (HMA) aims to measure the abilities of a subject to stand or to walk. In the field of HMA, tests are daily performed in research laboratories, hospitals and clinics, aiming to diagnose a disease, distinguish between disease entities, monitor the progress of a treatment and predict the outcome of an intervention [Brand and Crowninshield, 1981; Brand, 1987; Baker, 2006]. To achieve these purposes, clinicians and researchers use measurement devices, like force platforms, stereophotogrammetric systems, accelerometers, baropodometric insoles, etc. This thesis focus on the force platform (FP) and in particular on the quality assessment of the FP data. The principal objective of our work was the design and the experimental validation of a portable system for the in situ calibration of FPs. The thesis is structured as follows: Chapter 1. Description of the physical principles used for the functioning of a FP: how these principles are used to create force transducers, such as strain gauges and piezoelectrics transducers. Then, description of the two category of FPs, three- and six-component, the signals acquisition (hardware structure), and the signals calibration. Finally, a brief description of the use of FPs in HMA, for balance or gait analysis. Chapter 2. Description of the inverse dynamics, the most common method used in the field of HMA. This method uses the signals measured by a FP to estimate kinetic quantities, such as joint forces and moments. The measures of these variables can not be taken directly, unless very invasive techniques; consequently these variables can only be estimated using indirect techniques, as the inverse dynamics. Finally, a brief description of the sources of error, present in the gait analysis. Chapter 3. State of the art in the FP calibration. The selected literature is divided in sections, each section describes: systems for the periodic control of the FP accuracy; systems for the error reduction in the FP signals; systems and procedures for the construction of a FP. In particular is detailed described a calibration system designed by our group, based on the theoretical method proposed by ?. This system was the “starting point” for the new system presented in this thesis. Chapter 4. Description of the new system, divided in its parts: 1) the algorithm; 2) the device; and 3) the calibration procedure, for the correct performing of the calibration process. The algorithm characteristics were optimized by a simulation approach, the results are here presented. In addiction, the different versions of the device are described. Chapter 5. Experimental validation of the new system, achieved by testing it on 4 commercial FPs. The effectiveness of the calibration was verified by measuring, before and after calibration, the accuracy of the FPs in measuring the center of pressure of an applied force. The new system can estimate local and global calibration matrices; by local and global calibration matrices, the non–linearity of the FPs was quantified and locally compensated. Further, a non–linear calibration is proposed. This calibration compensates the non– linear effect in the FP functioning, due to the bending of its upper plate. The experimental results are presented. Chapter 6. Influence of the FP calibration on the estimation of kinetic quantities, with the inverse dynamics approach. Chapter 7. The conclusions of this thesis are presented: need of a calibration of FPs and consequential enhancement in the kinetic data quality. Appendix: Calibration of the LC used in the presented system. Different calibration set–up of a 3D force transducer are presented, and is proposed the optimal set–up, with particular attention to the compensation of non–linearities. The optimal set–up is verified by experimental results.
Resumo:
The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.
Resumo:
The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.
Resumo:
Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.
Resumo:
The irrigation scheme Eduardo Mondlane, situated in Chókwè District - in the Southern part of the Gaza province and within the Limpopo River Basin - is the largest in the country, covering approximately 30,000 hectares of land. Built by the Portuguese colonial administration in the 1950s to exploit the agricultural potential of the area through cash-cropping, after Independence it became one of Frelimo’s flagship projects aiming at the “socialization of the countryside” and at agricultural economic development through the creation of a state farm and of several cooperatives. The failure of Frelimo’s economic reforms, several infrastructural constraints and local farmers resistance to collective forms of production led to scheme to a state of severe degradation aggravated by the floods of the year 2000. A project of technical rehabilitation initiated after the floods is currently accompanied by a strong “efficiency” discourse from the managing institution that strongly opposes the use of irrigated land for subsistence agriculture, historically a major livelihood strategy for smallfarmers, particularly for women. In fact, the area has been characterized, since the end of the XIX century, by a stable pattern of male migration towards South African mines, that has resulted in an a steady increase of women-headed households (both de jure and de facto). The relationship between land reform, agricultural development, poverty alleviation and gender equality in Southern Africa is long debated in academic literature. Within this debate, the role of agricultural activities in irrigation schemes is particularly interesting considering that, in a drought-prone area, having access to water for irrigation means increased possibilities of improving food and livelihood security, and income levels. In the case of Chókwè, local governments institutions are endorsing the development of commercial agriculture through initiatives such as partnerships with international cooperation agencies or joint-ventures with private investors. While these business models can sometimes lead to positive outcomes in terms of poverty alleviation, it is important to recognize that decentralization and neoliberal reforms occur in the context of financial and political crisis of the State that lacks the resources to efficiently manage infrastructures such as irrigation systems. This kind of institutional and economic reforms risk accelerating processes of social and economic marginalisation, including landlessness, in particular for poor rural women that mainly use irrigated land for subsistence production. The study combines an analysis of the historical and geographical context with the study of relevant literature and original fieldwork. Fieldwork was conducted between February and June 2007 (where I mainly collected secondary data, maps and statistics and conducted preliminary visit to Chókwè) and from October 2007 to March 2008. Fieldwork methodology was qualitative and used semi-structured interviews with central and local Government officials, technical experts of the irrigation scheme, civil society organisations, international NGOs, rural extensionists, and water users from the irrigation scheme, in particular those women smallfarmers members of local farmers’ associations. Thanks to the collaboration with the Union of Farmers’ Associations of Chókwè, she has been able to participate to members’ meeting, to education and training activities addressed to women farmers members of the Union and to organize a group discussion. In Chókwè irrigation scheme, women account for the 32% of water users of the familiar sector (comprising plot-holders with less than 5 hectares of land) and for just 5% of the private sector. If one considers farmers’ associations of the familiar sector (a legacy of Frelimo’s cooperatives), women are 84% of total members. However, the security given to them by the land title that they have acquired through occupation is severely endangered by the use that they make of land, that is considered as “non efficient” by the irrigation scheme authority. Due to a reduced access to marketing possibilities and to inputs, training, information and credit women, in actual fact, risk to see their right to access land and water revoked because they are not able to sustain the increasing cost of the water fee. The myth of the “efficient producer” does not take into consideration the characteristics of inequality and gender discrimination of the neo-liberal market. Expecting small-farmers, and in particular women, to be able to compete in the globalized agricultural market seems unrealistic, and can perpetuate unequal gendered access to resources such as land and water.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
Nel Comune di Ravenna, oltre 6.800 ettari di terreni agricoli sono a rischio salinizzazione, a causa dell’alta salinità delle acque sotterranee presenti all’interno dell’acquifero freatico costiero. L'area è interessata da subsidenza naturale, per compattazione dei sedimenti alluvionali e antropica, causata dall’estrazione di gas e dall’eccessivo sfruttamento delle acque sotterranee. Ne deriva che la maggior parte di questo territorio è sotto il livello medio del mare e l'agricoltura, così come ogni altra attività umana, è possibile grazie ad una fitta rete di canali di drenaggio che garantiscono il franco di coltivazione. L’agricoltura è una risorsa importante per la zona, ma a causa della scarsa disponibilità di acque dolci e per l’aumento dei processi di salinizzazione dei suoli, necessita di un cambiamento. Servono pratiche agricole sostenibili, con idonei requisiti irrigui, di drenaggio del suolo, di resistenza alla salinizzazione e di controllo del suolo. Dopo un’analisi generale sulle condizioni dell’acquifero, è stato monitorato un transetto di 10km rappresentativo della parte costiera di Ravenna. Infine, con l'obiettivo di comprendere l'interazione tra un canale d'irrigazione e le acque sotterranee, una piccola area agricola (12 ettari), è stata monitorata nel corso del 2011 utilizzando metodi idrologici, geochimici e geofisici. I risultati di questo lavoro mostrano una diffusa salinizzazione della falda freatica, ma anche la presenza di una lente d'acqua dolce spessa 5m, a 400m dalla linea di riva, con caratteristiche chimiche (hydrofacies) tipici di acque continentali e con dimensioni variabili stagionalmente. Questa bolla di acqua dolce si è originata esclusivamente dalle infiltrazioni dal canale d’irrigazione presente, in quanto, il contributo dell’irrigazione superficiale è stato nullo. Sfruttando la rete di canali di drenaggio già presente sarebbe possibile estendere questo processo d’infiltrazione da canale in altre porzioni dell’acquifero allo scopo di ricaricare l’acquifero stesso e limitare la salinizzazione dei suoli.
Resumo:
Atmospheric aerosol particles directly impact air quality and participate in controlling the climate system. Organic Aerosol (OA) in general accounts for a large fraction (10–90%) of the global submicron (PM1) particulate mass. Chemometric methods for source identification are used in many disciplines, but methods relying on the analysis of NMR datasets are rarely used in atmospheric sciences. This thesis provides an original application of NMR-based chemometric methods to atmospheric OA source apportionment. The method was tested on chemical composition databases obtained from samples collected at different environments in Europe, hence exploring the impact of a great diversity of natural and anthropogenic sources. We focused on sources of water-soluble OA (WSOA), for which NMR analysis provides substantial advantages compared to alternative methods. Different factor analysis techniques are applied independently to NMR datasets from nine field campaigns of the project EUCAARI and allowed the identification of recurrent source contributions to WSOA in European background troposphere: 1) Marine SOA; 2) Aliphatic amines from ground sources (agricultural activities, etc.); 3) Biomass burning POA; 4) Biogenic SOA from terpene oxidation; 5) “Aged” SOAs, including humic-like substances (HULIS); 6) Other factors possibly including contributions from Primary Biological Aerosol Particles, and products of cooking activities. Biomass burning POA accounted for more than 50% of WSOC in winter months. Aged SOA associated with HULIS was predominant (> 75%) during the spring-summer, suggesting that secondary sources and transboundary transport become more important in spring and summer. Complex aerosol measurements carried out, involving several foreign research groups, provided the opportunity to compare source apportionment results obtained by NMR analysis with those provided by more widespread Aerodyne aerosol mass spectrometers (AMS) techniques that now provided categorization schemes of OA which are becoming a standard for atmospheric chemists. Results emerging from this thesis partly confirm AMS classification and partly challenge it.
Resumo:
The quality of fish products is indispensably linked to the freshness of the raw material modulated by appropriate manipulation and storage conditions, specially the storage temperature after catch. The purpose of the research presented in this thesis, which was largely conducted in the context of a research project funded by Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), concerned the evaluation of the freshness of farmed and wild fish species, in relation to different storage conditions, under ice (0°C) or at refrigeration temperature (4°C). Several specimens of different species, bogue (Boops boops), red mullet (Mullus barbatus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax), during storage, under the different temperature conditions adopted, have been examined. The assessed control parameters were physical (texture, through the use of a dynamometer; visual quality using a computer vision system (CVS)), chemical (through footprint metabolomics 1H-NMR) and sensory (Quality Index Method (QIM). Microbiological determinations were also carried out on the species of hake (Merluccius merluccius). In general obtained results confirmed that the temperature of manipulation/conservation is a key factor in maintaining fish freshness. NMR spectroscopy showed to be able to quantify and evaluate the kinetics for unselected compounds during fish degradation, even a posteriori. This can be suitable for the development of new parameters related to quality and freshness. The development of physical methods, particularly the image analysis performed by computer vision system (CVS), for the evaluation of fish degradation, is very promising. Among CVS parameters, skin colour, presence and distribution of gill mucus, and eye shape modification evidenced a high sensibility for the estimation of fish quality loss, as a function of the adopted storage conditions. Particularly the eye concavity index detected on fish eye showed a high positive correlation with total QIM score.
Resumo:
Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.
Resumo:
Agri-food supply chains extend beyond national boundaries, partially facilitated by a policy environment that encourages more liberal international trade. Rising concentration within the downstream sector has driven a shift towards “buyer-driven” global value chains (GVCs) extending internationally with global sourcing and the emergence of multinational key economic players that compete with increase emphasis on product quality attributes. Agri-food systems are thus increasingly governed by a range of inter-related public and private standards, both of which are becoming a priori mandatory, especially in supply chains for high-value and quality-differentiated agri-food products and tend to strongly affect upstream agricultural practices, firms’ internal organization and strategic behaviour and to shape the food chain organization. Notably, increasing attention has been given to the impact of SPS measures on agri-food trade and notably on developing countries’ export performance. Food and agricultural trade is the vital link in the mutual dependency of the global trade system and developing countries. Hence, developing countries derive a substantial portion of their income from food and agricultural trade. In Morocco, fruit and vegetable (especially fresh) are the primary agricultural export. Because of the labor intensity, this sector (especially citrus and tomato) is particularly important in terms of income and employment generation, especially for the female laborers hired in the farms and packing houses. Hence, the emergence of agricultural and agrifood product safety issues and the subsequent tightening of market requirements have challenged mutual gains due to the lack of technical and financial capacities of most developing countries.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn