941 resultados para "Ciliary neurotrophic factor"
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
This paper details a bulk acoustic mode resonator fabricated in single-crystal silicon with a quality factor of 15 000 in air, and over a million below 10 mTorr at a resonant frequency of 2.18 MHz. The resonator is a square plate that is excited in the square-extensional mode and has been fabricated in a commercial foundry silicon-on-insulator (SOI) MEMS process through MEMSCAP. This paper also presents a simple method of extracting resonator parameters from raw measurements heavily buried in electrical feedthrough. Its accuracy has been demonstrated through a comparison between extracted motional resistance values measured at different voltage biases and those predicted from an analytical model. Finally, a method of substantially cancelling electrical feedthrough through system-level electronic implementation is also introduced. © 2008 IOP Publishing Ltd.
Resumo:
This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection