953 resultados para ~(13)C NMR
Resumo:
The identification of six synthesized diosgenyl saponin analogs with up to five sugars was accomplished by NMR studies. A combination of homo- and heteronuclear two-dimensional NMR techniques was utilized to achieve the complete H-1 and C-13 NMR assignments. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Syntheses and NMR studies are reported of two 15N-labelled Pt(II) complexes of anticancer interest: cis-PtCl2(15NH3)(c-C6H1115NH2), a metabolite of the orally-active Pt(IV) complex cis,trans,cis-[PtCl2(acetate)2(c-C6H11NH2)(NH3), and trans-[PtCl2(15NH3)(c-C6H1115NH2), a reduction product of the active Pt(IV) complex trans,trans,trans-[PtCl2(OH)2(c-C6H11NH2). For cis-[PtCl2(15NH3)(c-C6H1115NH2), hydrolysis was faster for the chloride ligand trans to cyclohexylamine, and the pKa values determined by [1H, 15N NMR spectroscopy for the two cis monoaqua isomers were the same (6.73). The trans monoaqua complex was a stronger acid with pKa of 5.4 (determined by 195Pt NMR). For the cis diaqua complex, pKa values of 5.68 and 7.68 were determined.
Resumo:
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.