993 resultados para word prediction
Resumo:
A description is presented of a time-marking calculation of the unsteady flow generated by the interaction of upstream wakes with a moving blade row. The inviscid equations of motion are solved using a finite volume technique. Wake dissipation is modeled using an artificial viscosity. Predictions are presented for the rotor mid-span section of an axial turbine. Reasonable agreement is found between the predicted and measured unsteady blade surface static pressures and velocities. These and other results confirm that simple theories can be used to explain the phenomena of rotor-stator wake interactions.
Resumo:
This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.
Resumo:
A method is presented for predicting the variance of the energy levels in a built-up system to accompany the mean values predicted by SEA. Closed form expressions for the variance are obtained in terms of the standard SEA parameters and an additional set of parameters αk that describe the nature of the power input to each subsystem k, and αks that describe the nature of the coupling between subsystems k and s.
Resumo:
Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier-Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A general formula for the prediction of drained weight of canned prawn processed under laboratory condition has been worked out earlier (Chaudhuri et al., 1978). Attempts were made in this communication to modify the general formula to predict the drained weight under commercial conditions of processing particularly blanching, as the moisture content of meat depends on the quantum of heat received during blanching (Govindan, 1975).