970 resultados para well production
Resumo:
Sustainability assessments were carried out in small-holders? farms in four territories where productive arrangements have been organized for production of minor oleagi- nous crops under the Brazilian biodiesel program. The study aimed at checking local impacts of the biodiesel productive chains at the rural establishment scale, and pro- moting the environmental performance of the selected farms, henceforth proposed as sustainable management demonstration units. Assessments were carried out with the APOIA-NovoRural system, which integrates 62 objective and quantitative indicators re- lated to five sustainability dimensions: i) Landscape Ecology, ii) Environmental Quality (Atmosphere, Water and Soil), iii) Socio-cultural Values, iv) Economic Values and v) Management and Administration. The main results point out that, in general, the eco- logical dimensions of sustainability, that is, the Landscape Ecology and Atmosphere, Water, and Soil quality indicators, show adequate field conditions, seemingly not yet negatively affected by increases in chemical inputs and natural resources use predicted as important potential impacts of the agro-energy sector. The Economic Values indica- tors have been favorably influenced in the studied farms, due to a steadier demand and improved prices for the oleaginous crops. On the other hand, valuable positive conse- quences expected for favoring farmers? market insertion, such as improved Socio-cultural Values and Management & Administration indicators, are still opportunities to be ma-terialized. The Environmental Management Reports issued to the farmers, based on the presented sustainability assessment procedures, offer valuable documentation and com-munication means for consolidating the organizational influence of the local productive arrangements studied. These productive arrangements were shown to be determinant for the selection of crop associations and diversification, as well as for the provision of technical assistance and the stabilization of demand - conditions that promote value aggregation and income improvements, favoring small-holders? insertion in the market. More importantly, these locally organized productive arrangements have been shown to strongly influence the valorization of natural resources and environmental assets, which are fundamental if sustainable rural development is to take place under the emerging agro-energy scenario.
Resumo:
Twenty years ago, in the Northeast Brazil, a tropical semi-arid area, the production of tropical wines from some Vitis vinifera L. cultivars started. In this region, it is possible to harvest two times a year, between April and December, and nowadays Syrah is the most cultivated wine grape. Research works about irrigation rnanagement in Syrah started in 2000 at Brazilian Agricultural Research Corporation (Embrapa). The aim of this paper is to introduce some characteristics about the region where Syrah grapevines is being cultivated under irrigation in Northeast Brazil, and to present some results obtained from field experiments as well as some grape and wine charcteristics already determined.
Resumo:
Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.
Resumo:
There is no doubt that sufficient energy supply is indispensable for the fulfillment of our fossil fuel crises in a stainable fashion. There have been many attempts in deriving biodiesel fuel from different bioenergy crops including corn, canola, soybean, palm, sugar cane and vegetable oil. However, there are some significant challenges, including depleting feedstock supplies, land use change impacts and food use competition, which lead to high prices and inability to completely displace fossil fuel [1-2]. In recent years, use of microalgae as an alternative biodiesel feedstock has gained renewed interest as these fuels are becoming increasingly economically viable, renewable, and carbon-neutral energy sources. One reason for this renewed interest derives from its promising growth giving it the ability to meet global transport fuel demand constraints with fewer energy supplies without compromising the global food supply. In this study, Chlorella protothecoides microalgae were cultivated under different conditions to produce high-yield biomass with high lipid content which would be converted into biodiesel fuel in tandem with the mitigation of high carbon dioxide concentration. The effects of CO2 using atmospheric and 15% CO2 concentration and light intensity of 35 and 140 µmol m-2s-1 on the microalgae growth and lipid induction were studied. The approach used was to culture microalgal Chlorella protothecoides with inoculation of 1×105 cells/ml in a 250-ml Erlenmeyer flask, irradiated with cool white fluorescent light at ambient temperature. Using these conditions we were able to determine the most suitable operating conditions for cultivating the green microalgae to produce high biomass and lipids. Nile red dye was used as a hydrophobic fluorescent probe to detect the induced intracellular lipids. Also, gas chromatograph mass spectroscopy was used to determine the CO2 concentrations in each culture flask using the closed continuous loop system. The goal was to study how the 15% CO2 concentration was being used up by the microalgae during cultivation. The results show that the condition of high light intensity of 140 µmol m-2s-1 with 15% CO2 concentration obtain high cell concentration of 7 x 105 cells mL-1 after culturing Chlorella protothecoides for 9 to 10 day in both open and closed systems respectively. Higher lipid content was estimated as indicated by fluorescence intensity with 1.3 to 2.5 times CO2 reduction emitted by power plants. The particle size of Chlorella protothecoides increased as well due to induction of lipid accumulation by the cells when culture under these condition (140 µmol m-2s-1 with 15% CO2 concentration).
Resumo:
The main objective of this research was to investigate pyrolysis and torrefaction of forest biomass species using a micropyrolysis instrument. It was found that 30-45% of the original sample mass remained as bio-char in the pyrolysis temperature range of 500 - 700˚C for aspen, balsam, and switchgrass. The non-char mass was converted to gaseous and vapor products, of which 10-55% was water and syngas, 2-12% to acetic acid, 2-12% to hydroxypropanone, 1-3% to furaldehyde, and 5-15% to various phenolic compounds. In addition, several general trends in the evolution of gaseous species were indentified when woody feedstocks were pyrolyzed. With increasing temperature it was observed that: (1) the volume of gas produced increased, (2) the volume of CO2 decreased and the volumes of CO and CH4 increased, and (3) the rates of gas evolution increased. In the range of torrefaction temperature (200 - 300˚C), two mechanistic models were developed to predict the rates of CO2 and acetic acid product formation. The models fit the general trend of the experimental data well, but suggestions for future improvement were also noted. Finally, it was observed that using torrefaction as a pre-curser to pyrolysis improves the quality of bio-oil over traditional pyrolysis by reducing the acidity through removal of acetic acid, reducing the O/C ratio by removal of some oxygenated species, and removing a portion of the water.
Resumo:
Increases in oil prices after the economic recession have been surprising for domestic oil production in the United States since the beginning of 2009. Not only did the conventional oil extraction increase, but unconventional oil production and exploration also improved greatly with the favorable economic conditions. This favorable economy encourages companies to invest in new reservoirs and technological developments. Recently, enhanced drilling techniques including hydraulic fracturing and horizontal drilling have been supporting the domestic economy by way of unconventional shale and tight oil from various U.S. locations. One of the main contributors to this oil boom is the unconventional oil production from the North Dakota Bakken field. Horizontal drilling has increased oil production in the Bakken field, but the economic issues of unconventional oil extraction are still debatable due to volatile oil prices, high decline rates of production, a limited production period, high production costs, and lack of transportation. The economic profitability and viability of the unconventional oil play in the North Dakota Bakken was tested with an economic analysis of average Bakken unconventional well features. Scenario analysis demonstrated that a typical North Dakota Bakken unconventional oil well is profitable and viable as shown by three financial metrics; net present value, internal rate of return, and break-even prices.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.
Resumo:
The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.
Resumo:
Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation widely used to modulate cognitive functions. Recent studies, however, suggests that effects are unreliable, small and often non-significant at least when stimulation is applied in a single session to healthy individuals. We examined the effects of frontal and temporal lobe anodal tDCS on naming and reading tasks and considered possible interactions with linguistic activation and selection mechanisms as well possible interactions with item difficulty and participant individual variability. Across four separate experiments (N, Exp 1A = 18; 1B = 20; 1C = 18; 2 = 17), we failed to find any difference between real and sham stimulation. Moreover, we found no evidence of significant effects limited to particular conditions (i.e., those requiring suppression of semantic interference), to a subset of participants or to longer RTs. Our findings sound a cautionary note on using tDCS as a means to modulate cognitive performance. Consistent effects of tDCS may be difficult to demonstrate in healthy participants in reading and naming tasks, and be limited to cases of pathological neurophysiology and/or to the use of learning paradigms.
Resumo:
Dairy cattle farms have a well-known environmental impact that affects all ecological compartments: air, soil, water and biosphere [1]. Dairy cattle farming are a significant source of anthropogenic gases from enteric fermentation, manure storage and land application, mainly ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The emission of such gases represents not only an environmental problem but also leads to energy and nitrogen (N) losses in ruminant production systems [2-5]. Several efforts are required on the development of new technologies and strategies that mitigate gaseous emissions, N losses and improve the efficiency of the energy and N cycles [6, 7]. In the Northwest of Portugal, dairy cattle production has a major impact on the economy, with strong repercussions at national scale. Therefore, our Ph.D. thesis project aims to: a) Study natural supplements as additives in the dairy cattle diet towards a decrease in GHG emissions from feeding operations; b) Compare commercial dairy cattle diets with and without additives on gaseous emissions from manure deposited in a simulated concrete floor; c) Assess the concentrations and emissions of NH3 and greenhouse gases from commercial dairy cattle facilities; d) Evaluate the effects of different additives on lowering gaseous emissions from dairy cattle excreta, using a laboratory system simulating a dairy house concrete floor.
Resumo:
We investigate the ways young children’s use of mobile touchscreen interfaces is both understood and shaped by parents through the production of YouTube videos and discussions in associated comment threads. This analysis expands on, and departs from, theories of parental mediation, which have traditionally been framed through a media effects approach in analyzing how parents regulate their children’s use of broadcast media, such as television, within family life. We move beyond the limitations of an effects framing through more culturally and materially oriented theoretical lenses of mediation, considering the role mobile interfaces now play in the lives of infants through analysis of the ways parents intermediate between domestic spaces and networked publics. We propose the concept of intermediation, which builds on insights from critical interface studies as well as cultural industries literature to help account for these expanded aspects of digital parenting. Here, parents are not simply moderating children’s media use within the home, but instead operating as an intermediary in contributing to online representations and discourses of children’s digital culture. This intermediary role of parents engages with ideological tensions in locating notions of “naturalness:” the iPad’s gestural interface or the child’s digital dexterity.
Resumo:
The physical environment can influence older people’s health and well-being, and is often mentioned as being an important factor for person-centred care. Due to high levels of frail health, many older people spend a majority of their time within care facilities and depend on the physical environment for support in their daily life. However, the quality of the physical environment is rarely evaluated, and knowledge is sparse in terms of how well the environment meets the needs of older people. This is partly due to the lack of valid and reliable instruments that could provide important information on environmental quality. Aim: The aim of this thesis was to study the quality of the physical environment in Swedish care facilities for older people, and how it relates to residents’ activities and well-being. Methods: The thesis comprises four papers where both qualitative and quantitative methods were used. Study I involved the translation and adaptation of the Sheffield Care Environment Assessment Matrix (SCEAM) into a Swedish version (S-SCEAM). Several methods were used including forward and backward translation, test of validity via expert consultation and reliability tests. In Study II, S-SCEAM was used to assess the quality of the environment, and descriptive data were collected from 20 purposively sampled residential care facilities (RCFs). Study III was a comparative case study conducted at two RCFs using observations, interviews and S-SCEAM to examine how the physical environment relates to older people’s activities and interactions. In study IV, multilevel modeling was used to determine the association between the quality of the physical environment and the psychological and social well-being of older people living in RCFs. The data in the thesis were analysed using qualitative content analysis, and descriptive, bivariate and multilevel statistics. Results: A specific result was the production of the Swedish version of SCEAM. The instrument contains 210 items structured into eight domains reflecting the needs of older people. When using S-SCEAM, the results showed a substantial variation in the quality of the physical environment between and within RCFs. In general, private apartments and dining areas had high quality, whereas overall building layout and outdoor areas had lower quality. Also, older people’s safety was supported in the majority of facilities, whereas cognitive support and privacy had lower quality. Further, the results showed that environmental quality in terms of cognitive support was associated with residents’ social well-being. Specific environmental features, such as building design and space size, were also noted, through observation, as influencing residents’ activities, and several barriers were found that seemed to restrict residents’ full use of the environment. Conclusions: This thesis contributes to the growing evidence-based design field. The S-SCEAM can be used in future research on the association between the environment and people’s health and well-being. The instrument could also serve as a guide in the planning and design process of new RCFs.
Resumo:
Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.
Resumo:
The aims of this thesis were to determine the animal health status in organic dairy farms in Europe and to identify drivers for improving the current situation by means of a systemic approach. Prevalences of production diseases were determined in 192 herds in Germany, France, Spain, and Sweden (Paper I), and stakeholder consultations were performed to investigate potential drivers to improve animal health on the sector level (ibid.). Interactions between farm variables were assessed through impact analysis and evaluated to identify general system behaviour and classify components according to their outgoing and incoming impacts (Paper II-III). The mean values and variances of prevalences indicate that the common rules of organic dairy farming in Europe do not result in consistently low levels of production diseases. Stakeholders deemed it necessary to improve the current status and were generally in favour of establishing thresholds for the prevalence of production diseases in organic dairy herds as well as taking actions to improve farms below that threshold. In order to close the gap between the organic principle of health and the organic farming practice, there is the need to formulate a common objective of good animal health and to install instruments to ensure and prove that the aim is followed by all dairy farmers in Europe who sell their products under the organic label. Regular monitoring and evaluation of herd health performance based on reference values are considered preconditions for identifying farms not reaching the target and thus in need of improvement. Graph-based impact analysis was shown to be a suitable method for modeling and evaluating the manifold interactions between farm factors and for identifying the most influential components on the farm level taking into account direct and indirect impacts as well as impact strengths. Variables likely to affect the system as a whole, and the prevalence of production diseases in particular, varied largely between farms despite some general tendencies. This finding reflects the diversity of farm systems and underlines the importance of applying systemic approaches in health management. Reducing the complexity of farm systems and indicating farm-specific drivers, i.e. areas in a farm, where changes will have a large impact, the presented approach has the potential to complement and enrich current advisory practice and to support farmers’ decision-making in terms of animal health.
Resumo:
Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.